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CALCULUS OF FUZZY SEIS I

Jézef Drewniak

Department of Mathewatics, Silesian University, Katowice, FPoland

summary. We are given a general view on dependence between properties
of poset L and the family of L-fuzzy sets. It is an exemplification of a

wrevious Goguen’s idea (cf.[10]).

1. L-fuzzy sets., Let X # ¢ derotes an arbitrary set and leb (L,g)

e a bounded poset (partially orcered set) with bounds denoted by O and 1.

Definition 1 {Zadeh [21], Goguen [10]).An L-fuzzy set (briefly L-set
or fuzzy set) in X is a mapping A: X —» L. The family of all L-sets in X
is denoted by L(X).

For any crisp set it C X, its characteristic function 14&,{,
1 for x el
() 1,(0) =
) 0 for x e XM
ie a special case of L-fuzzy set. -1I¢ is also denoted by OX and generally
for r €L we pub

r for x €,
{23 rM(X) =
i 0 for x @& XM,

50 1. € L(X).
L{X) is partially ordered as a family of mappings taking values in poset,
nanely

(%) AL B & ( a(x) £ 3(x) for xeX)
end it has bounds Oy and 1y (for the characteristic funetions (1) the
relation (3) coincides with the inclusion of sets).

‘the following notions are useful for illusiration of fuzzy concepts:
Definition 2 (Kloeden [13]). The set

{4) G(a) = {(X,I’)EX"L} r { Ax) }

is called an endograph of L-fuzzy set A. .
Definition % (Zaden [21], weiss [20]). "he crisp sets

(5)  §,(a) = {xeX| A(x) 2r}. U (4) = {xeX] A(x) > T } for rel

: . % - .
are called cuts (r—cuts) ) and strong cuts of L-fuzzy set A, respectively.

“}
© 1t is a part of [8], Chap.Z.
H\
!lerm is connected with geometrical interpretation of endograph alike

the term "level sets" used for (5) in literature (cf.[2%]). Another cuts

(fuzzy levels) are consicered in [16].
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HC(A) is also called support of A =nd it is denoted by S(A),
(e) S(a) = {xex| A(x) >0} .
’it is obvious that for A4 € L(X) we get
() =X, 1,(8) =4,
Mr(A) c Nr(ﬁ) for r €L,
N

and for A, B € L(X) we have

=> (H_(a) c N (4), u(a) c Mr(A) ) for r, s€L

4]

(73 Ag B &> G(A) c (),
(&) A B Nr(A) c NP(B) for r€lL,
(9) A 5; B = Mr(A) C MT(B) for r€L .,

‘‘he implication inverse to (9) is obtained only for linear I and them
(10) A=5 &> 1 (A) = (B) for rel.
Any L-sebt is uniquely determined by bthe family of all its culs:
“‘heorem 1 (ftesolution identity?QﬂFor any A € L{X) +there exists the
Supremnum . '

(11) Vr, =4 .
rel, Nr(A}

Yroof. Let x € X. Pulting

112) Ar = r}ir(ﬁ) for r€L ,
we prove that
(1) v A (x) = A(x) ,

. v€l, .

which is equivalent to (11}« By (2) and (5) we get
\ 8
Ar(x, g A(x)ﬂ for r el
and ‘therefore set {Ar(x)}reL has upper bound A(x). But for r = A(x) € L
we cet Ar(x} = A(x) which dimplies (13).

¥rom the algebraic point of view L(X) is a direct product of posets,
LX) = LX. ‘*his gives an useful mevhod for introduction of different struc—
“ures in L(X). After an argumentation of Goguen L11] we can put

Theorem 2. Any property can be extended form L to L(X) iff it is
conserved by direct product operaiion.

Ferticular cases of this theoren were cosidered in [3]~[6] and [14].
We consider its application for the lattice algebra and for oréered

{iroupoids.

*)

E3

¥For L = [0,1] the resolution identity was proved by Zadeh [22].
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2. Lattices of L-fuzzy sets. Properties presented here are related to
thege in the algebra of sets. After Theorem 2 we get (cf.[12], § 46)

iheorem 3. L(X) is a bounded, complete, distributive, infinitely
distributive, completely distributive, Brouwerian, De Morgan or Boolean
lattice iff L has respective property. Moreover, operations from L to L(X)
are extended pointwise and operations from L(X) to L are projected by
using constant fuzzy sets Ty for r €L (cf.(2)).

For particular L we get some consegquences of '‘heorem 3.

Corollary 1. If (L,V,A) is a bounded lattice then (L(X),v,A) is also
& bounded lattice, where lattice operations for A, B € L(X) have the form

(14) (AvB)(x) = A(x)VvB(x) , (AAB)(x) = A(x)AB(x) for xeX.
In particular for A, B, C, D € L(X) we get (cf.[2], Chap.I)

AnB L AL AVB,

AL B € 4AB=4 € AVB=5,
(g a Cg B) e Ccg haB,

(4 D, BLD) & AvBL D,

AvA =4 , Ank =4,

AVB = BVA , AAB = BAA ,
Av(BwC) = (AvB)vC , AA(BAC) = (AAB)AC,
AV (AAB) = 4, AA(AVB) = A ,,

Ag B = (Avcg BvcC, A»\cg BaAC ) ,
(AAB)V(CAD) < (AvCia(BVD)-,

(AAB)vC  (AVC)A(BVCO) , (AAC) v (BAC) & (AvB)AC ,
(An BV (BAC)V (CAA) < (AvB)A(Bw(C)A (Cwa) ,

A0 =0, Avox'=A ,

A, AV,

i
it

and
'€

1)('

“he lattice product (14) can be characlerized by means of endographs
snd cuts
{15) C=4AB > G(C) = GA)AG(B) ,
(16 C=AAB &> ( NI‘(C) Nr(A)ANr(B) for relL ).
For the lattice sum we only have
CGAYVG(B) c c(avE) ,
ﬂr(A-}vhr(B) c Ilr(Av 3) for r €Ly

but if lattice I is linear then we get a characterization
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(17) C=4avB &> () = ¢(a) Ve(B)
(167 AV ( nr(CJ I'(A).,.,v Nr(.g% ifor relL )

ihe strong cubs are less useful for such characierization. In general

we et
4‘1 ( A )) C u ’(:\)n LL (l"), N (L).}VM (‘j) NI (ﬁV B) fOI' r € T
nowever for linear L we have yropcztles similar ‘o (1C) and (10)

Coroilary 2. If L is a distributive latlice then L(A) is also a dis-
tributive lattice and for A, B, C € L(X) we get (cf.2],Chap.1I)

(AVBIAC = (AAC)V (BAC) { ’:"‘.V(B/\C)
A{(BV) < (AvC)A(BVC) = (AAB)VC ,

(AAB)V(BACIv (CAA) = (AVB)A(BVCIA(CVA)

A=B &> (AVC =BvC(, AAC = BAC)

ACHB &> (AvC CBYC, AACC BAé) .

Corollary 3. If L is a complete lattice, then L(X) is also a complete
lattice and for any A, € L(X), t € 7 we have

%
(g) (V8 )x) =V alx), (A At,(x)=/\ A, (x) for xeX.
ter 7 el el

ir &, Ays Bys C L Ds € L(X) for se&sS, t €T +then we also have
(e 2T, ,nap.v" i

VIV ied=VNVch, ANACcHI=AANC,

ses tey tel ges ses bel €7 ses

VNG CAVo) . VoV @wad) ((Va)aVa,
e €' 868 sE€5 et e se%

(/\x;V(/\D) /\/\(AVU‘,

e SES tel €S

(N A, )V(/\ BJG/

i

/

A @ve), V (4AB) (VA Jn(V B
el

e’ te“

AVIN B A (AvBt , V (AI\B ) € anl \/B) s

A e e
(a, 3B, for te2) => (V Ay £ VB By o AA S A By )
wh t,e’ ’tE" -tErLl

Using endographs and cuts we get
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