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ABSTRACT

Based upon the theory of fall-shadow of random sets, this paper proposes a new mo-
del of statistics — set-valued statistics, which is a generalization from classical
statistics and fuzzy statistics. As applications of set-valued statistics, the me-
thods of fall-shadow smoother have been presented.

INTRODUCTION

In the classical statistics, each trial gives us a definite point in the phase space
(the set of possibly observational values). If this confinement may be relaxed and
the result of each trial is an ordinary or a fuzzy set in the phase space, then such
A kind of experiment 1s called experiment of set-valued statistics.

Set-valued statistics are suitable for those measurement processes which possess
both randomness and fuzziness. Such a kind of statistics can partly or completely
contain psychological measurement, so shows very good prospects of application to
various areas. .

ixtension like this of statistical method was_ starting from fuzzy stastistics.

Zhang Nanlun(10), Ma Mouchao and. Cao Zhigiang(3) proposed for the purpose to establish
membership function some statistical methods, which are in fact set-valued ones.

E. Sanchez and author then proposed theory of fuzzy fall shadow of random sets under
such background. Our work was similar to that of Goodman, but ours possesses more
concrete and clear background, and a more perfect theoretical framework.

In a review, D. Dubois and H. Prade pointed out: "The above discussion suggests that
fuzzy set and possibility theory can be interpreted in the framework of random sets
(Goodman ,Wang and Sanchez )" (1)1t is just these two authors who proposed a random
test model with noncrisp occurences, which is in fact a kind of set valued statistics.

TWO KIND3S OF DUAL STATISTICAL MODELS

Thers exists some duality between the fuzzy statistical experiment model and clas-

u : fixed element
A%: approximate of A,
movable

A: fixed cvent
W: basic event, movable
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sical one. As shown in Fig. 1 the classical statistical experiment may be viewed

as one where "the cycle is fixed, the point is movable', the fuzzy statistical model
(generally, set-valued statistics) may be viewed as experiment where "the point is
fixed and cycle is movable'.

Starting from the duality mentioned here, we can transfer a kind of statistical mo-
del into another by means of interchanging "cycles" and "points". Denote

w = [A|UDASu} (uwel) (2. 1)
Ué{d!ueU} ) (2.2)

The cycle A in{J is a point in 9P(U), and the point w in U responds to a cycle u (an
ultra-filter in Boolean algebra ¢ (UJ)). So a set-valued statistics model on U can be
transformed into a classical statistics model on P (U).

For a given c—fiel@ﬂé containning]b on P(U), a mapping from some probability field
(,F,P) to (PU),B)
Z 0 PU) (2:3)

()= {w|ztmweClex (V@Gié)), (2.4)

is called a random set on{J (which is a random variable on ®(V)). S (O,F; ?(U),’l\g)
denotes the set of all such random sets.

Each trial of probabilistic statistical experiment is an occurence of a random va-
riable, however each trial of set-valued statisticla experiment is an occurence of a
random set.

Vv
The distribution of random set 3J is PB(E), Y is ergodic over B . It is difficult to
give il an expression. To express the constraint of Py inU is easier.

Definition 2.1. Suppose Fed(0,F; ?(U),V\é), denote
Py () === P(w|Bw)ew)=P(w|3wdu), (2.5)

it i1s called the fall-shadow or covering function of ¥. The fall-shadow of random
set is the most important numerical function. In fuzzy statistics it is the member-
ship function of correspondent fuzzy subset. Many fundamental formula of random va-
riable may be expressed in the theory of random set by the aid of fall-shadow.

SET-VALUED STATISTICS

Discussed here is only those set-valued statistics which shows an ordinary subset
after each trial. For a giving 3etfﬂlﬁ; P(U),B), make n times independent observa-
tions, and get sample

Xy, Ha, v+ s Xp (x;e P, (=1.,---,n) {(3.1)

Regardless of concrete observed results, they are abstractly considered as a group
of independent sets having the same distribution. For any arbitrary uelJ, denote

n

X(w 2= 5 T A («) (3.2)
It is 2alled the covering frequency of 3 to%, and which is estimation function of
;Us' §
Theorem 3.1 (The law of great numbers of fall-shadow) Suppose that % € (0,%; #(U),B)
(i=1,2,+++) are independent and have the same distribution, /%(N)zlﬂ(u), denote

— o 4l ¢

ER (u,mj———n izl%.?g(“’)tu) B (3.3)

then for any weé{f holds
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ET QPR N plw) (M 00) (3.4

Let 3 €S (Q.F; PWU),B), (UB) be a measurable space, m is a positive measure on B ,
denote

M F) = 5U Mg (e m Cdu) (3.5)
E(Z) is an important numerical characterization. To estimate m(3), we can use
L4
%(x')“‘)Xn):é:frIfz’ m(x‘:) (3_6)

Proposition 3.2. Suppose m(3)< oo, B),° " ,3Fn, " are independent random sets with
the same distribution asw , then we have

n

W (B, F) = 2 () 2R (3 (o) (3T

Y]

TRANSFORMATION OF RANDOM TESTS INTO SET-VALUED ONES

There are unaccuracy problem with the measurement of physical guantities. The ori-
gin of errors lies in both probability and fuzziness. The observed results may be
written in the form as @ta, it 1s in fact a set value [§-4a, §+4].

Let 0 ,4 be independent real random variables, P(4>0)=1, denote

(W) 2= [ dw—aw, Bw+aw] (4-1)
it is a random set.

Proposition 4.1. ¥ has fall-shadow

Mg LX) == Fo-a (X = Fgra (X9 (meosx <+ ) (4.2)
where Fo (== P(T=<sX) | T=08-4 or §+4.

Proposition 4.2. Suppose that 3=[Q-4, 0+4], EG=a, Ea=3, (i=1,2,***) are in-
dependent random sets with the same distribution as & , then for any x&{a-3,a+sy holds
a. é.

/{(%236(@)“) > %[a-z,ans] () (n—>o00) (4:-3)
where 3;(w) be intervals, 7%251(w) is understanded according to the operations among
interval-numbers.

From this, for a sample x,,"*", x,0f 3 , we cna make

A

X, (x: € PR, (=1+-,n) (4.4)

as an interval estemation of the expected value of § .

N
ny

"l
it M=

i

We may also reversely make statistics for § and A and get information concerning the
fall shadow of % .

Proposition 4.3. Suppose § and A are independent integral random variables, A never
takes megative values. Suppose that n times of independent tests of these variables
have been made and the frequency while §=h is n,( =n), the frequency while

n
. K=—~co K
A=k is m( = mK:m), denote

Koma -0
‘ Iu‘.z /u,_,' :-<—~——“§. mf/m (i{=0) (4,,5)
denote algo iz
— ‘oo
R L (K=o, 21,2 ) (4-6)

then for any k, holds



39

FALL-SHADOW SMOOTHER METHOD

Formulae (4.4) is a smoother of sequence {n,} by fall-shadow [} . It is just
the sliding average with period 24 whenever 4 is a constant.

Consider a data field{x,,..., ;,,‘)}(jv‘ﬁ I ={ rjr is integel, - o STy (j‘=1 ,*°*,n)) which

can be viewed as an occurence of a certain random field ey, im (@, o in)el, x o xL,).
Exame an n-dimension integral random vector, it always takes its value in I,x°°*xI,.
Suppose the distribution of 1 is {Pcu, ..., tar} ({1, 51n) €I,x+++xI,), denote

@) ={(u, -, ) |3 is located between o and the
jth component of Y (w) (3=1,+",n)} ) (1)
N1is a random set.
Proposition 5.1. 1 has fall-shadow
Hq Cln=s ) = 2 rihl."jj”)' (5.2)
=% sums those terms (j,,""",jn ) which are satisfied with je=1ix= 0 or O=six= j«
for every k<n.
Mn has following property:
(VO (< <O of 0K IS ig))=> Ml in) == MG, in ), (5.32
The fall-shadow I holding this property (5.3) is called centralized fall-shadow.

Definition 5.1. For a given data field Ex(m,u-,u)}((i,,"',in) €I,x*°xIn), and a
centralized fall-shadow /M(i.,“‘,in), denote

o M - * - .
Yo, o, tny== Jlt, o, ts) = ¢ =z ju(s., Sa) X4t (5.5)

7

where =% sums those terms, about which sxttx =ik for any k<n holds, ¢ is an ap-
propriately determined constant. Then call {y(¢,..., s>} the fall-shadow smoother of

(X, em b

Let M be the set of all centalized fall-shadows.

(.‘;'/‘"'1 in)

Definition 5.2. For a given class M S M, Me€M, is called the interior correlation
function of the data field,if
Mo - P M yHM Y
z ( y(':u“'/(\«n) X(CU““JCI\)) - FEM (‘:2.:- ({») ( )(2.,-',Cn)wx(':u“vfn)). (5.‘ 6)
LV

By use of the interior correlation function, we may make the interpolation and ex-
trapolation of data field. It can be applicable to field estimation and prediction
problems. The weight function regression method in mathematical statistics and the
Krige method in geology ststistics(4) both may be contained in the framework sugges-
ted herein.

DEGREE ANALYSIS

The set-valued statistics is most hopefully available in those decision-making pro-
cesses, which have to be relying upon psychological measurement. In practice, we
should carry out lots of such estimations as evaluating the degree of some thing to
fit some aim or requirement. People often use some words as "satisfying", "feasi-
ble", "compatible", "stable", "reliable", ---- and so on to express their feeling
and perception to a certain object. People want to give them measurement scales ’
and to conduct analysis about them, but effective mathematical method is lacking
for this purpose. Set-valued statistics can offer an useful approach, which is the
degree analysis.
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1. Degree estimation for a single factor

Those evaluation methods cited in current _iterature are similar to that presented
here. For instance, in order to evaluate the satisfactory degree of some thing, we
may draw a line segment, number 1 represents "very satisfying", and 0 "very unsatis-
fying", 0.5 "middling", as shown in Fig. 2. Every participating one puts three
points on proper locations on the line, in accordence with his feeling about the
degree of satisfaction. Denote the first point from left x, and first point from
right y. The interval [x,y] is the result for a person, and [x;,y;](i=1,2,‘--,n)
for all parcipating persons. Calculating X(u) according to eq.(3.2), we cna get a
fuzzy satisfactory degree. Futhermore calculate

o= L T X (6:1)

=) 2

and n

o= = Z (Ve =) (6‘?-)

=t
according to eq.(3.6). We may represent the point estimation of satisfactory degree
by use of &. W may be called the blindness of point estimation. The smaller the
value of T, we are more faithful about such an estimation.

2. Degree analysis of multiple factors

Taking as a simple example, suppose that we should make an examination of several
proposed plans from the view of point of '"necessity" and "feasibility". As shown in
Fig. 3, each trial gives us a interval [x,,y,10n axis u(necessity) and [x,, y,]axis
v (feasibility), then as a result a rectangle [x,,x,; vy, ,y;]too. The result of n
times trials is [x”,x™ ; y, 9,y 1 (k=1,---,n). Then following result

_ | -
x (u, U2 = E_J ’%[x'“() xz(K) ) y‘(K) jLK)] (u, V) (63)
= p > ) 72
can be obtained by eq.(3.1), where
y 1, i Psusy” K= us Xm}.
(LL, U) = { .
[xlcx)l xltk) ; ylll‘) , )’f'()] o, otheywise

According to the weights assigned to "necessity" and "feasibility", calculate

(] bl
_—.—_—J S (w10, (4,03 +U~wl1:u,u))i(u,u)dudu/ J J Xuw,v)dudy (6.4)
o (]

t is called the synthetic degree of necessity and feasibility of that plan. Here
w,{u,v), w,(u,v) are varing weight functions, which satisfy

2
UJL-(U,U)?,‘O, Euwi(“‘v)ii (65)

The idea of varying weight function lies in the fact that the weights of both fac-
tors should be variable with different states of combination of these two factors.

The determination of varying weights may be carried out by investigation among ex-
perts, getting at last a "vector field" similar to that shown in Fig.5. The slope
represents the ratio of w,and w,. The approximate expression of slope in Fig. 4 is
u%ﬁy,v):u/v, then accordinging to eq. (6.5) we get

Y
w, (u, v) ==
u+v 2 (4. 0) U+

w, (U, V) = (6:6)

>
thus

{

!
= ja Jo = ’“‘(“"“')d“d”/jafiCu,vJoLudv _ (6.7)
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