A STRUCTURAL REPRESENTATION OF THE TOTALLY FUZZY SETS.

by WU TAO

Many works have been done about the fuzzy sets, particularly about the fuzzy sets with a relation of indiscernability, called "the totally fuzzy sets". Applying the definition of the category of the totally fuzzy sets exposed by PONASSE (1), we will give a way of showing in order to represent the structure of a totally fuzzy set.

Thereafter, J is always designed by a finite sequence:

$$J = (r_0, r_0, \dots, r_n)$$
 with $0 = r_0 < \ldots < r_n = 1$.

We recall the essential definition of JTF: the category of the J-totally fuzzy sets:

.The objects of JTF are the J-totally fuzzy sets, i-e the triplets $\underline{\underline{A}} = (\underline{A}, \alpha, \sigma)$ where A is a set, $\sigma: \underline{A} \times \underline{A} \longrightarrow \underline{J}$, $\alpha: \underline{A} \longrightarrow \underline{J}$ are two functions verifying:

$$\sigma(a,a) = \alpha(a), \quad \sigma(a,b) = \sigma(b,a), \quad \sigma(a,b) \land \sigma(b,c) \leq \sigma(a,c)$$

. The morphisms from \underline{A} = (A, $\alpha, \sigma)$ to \underline{B} = (B, β, τ) are the binaries relations R from A to B, verifying:

- 1. Ra $\neq \emptyset$ where Ra = $\{b \in B \mid aRb\}$
- 2. aRb and a'Rb'== $\Rightarrow \sigma(a,a') \leqslant \tau(b,b')$
- 3. aRb and $\alpha(a) \leq \tau(b,b') == \Rightarrow aRb'$
- . The composition of two morphisms

$$\underline{A} = (A, \alpha, \sigma) \quad \underline{R} \quad \underline{B} = (B, \beta, \tau) \quad \underline{S} \quad \underline{C} = (C, \nu, \rho)$$

is the morphism $SR : \underline{A} \longrightarrow \underline{C}$ defined by :

aSRc iff there exists beB, c'eC such aRb, bSc' and $\alpha(a) \leqslant \rho(c,c')$.

The identity $1_A: \underline{A} \to \underline{A}$ is $a1_{\underline{A}}a' \Leftarrow = \Rightarrow \alpha(a) = \sigma(a,a')$. $R: \underline{A} \to \underline{B}$ is a monomorphism iff:

aRb and a'Rb' \Longrightarrow $\sigma(a,a') = \alpha(a) \wedge \alpha(a') \wedge \tau(b,b')$.

G.MYCEK (3) has proved that the category JTF is a topos.

1. Lemma (4): Given a TFS $\underline{A} = (A, \alpha, \sigma)$, if $a_0, a_1 \in A, a_0 \neq a_1$ and $\alpha(a_0)$ = $\sigma(a_0, a_1)$ (i-e, a_0, a_1) then we can "forget" a_0 . Precisely : let $\underline{A}' = (\underline{A}', \alpha', \sigma)$ where $\underline{A}' = \underline{A} - \{a_o\}$ and $\underline{\sigma}' = \underline{\sigma}|$ then \underline{A} is isomorphic to A' in JTF.

<u>Definition</u>: Given $\underline{A} = (A, \alpha, \sigma)$, a <u>frame</u> of \underline{A} is an object $\underline{A}' = (A', \sigma', \sigma')$ of JTF such that \underline{A}' is isomorphic to \underline{A} and for any $a, a' \in A'$, $a \neq a' ==> \sigma'(a,a') \leq \alpha'(a) \wedge \alpha'(a')$.

2. Proposition: for any \underline{A} there exist a frame.

The demonstration is in (4). With the axiom of choice, the frame play the role of cardinals number of set.

- 3. Lemma : given $\underline{A} = (A, \alpha, \sigma)$ for $a_1, a_2, a_3 \in A$, let $r_1 = \sigma(a_2, a_3)$ $r_2 = \sigma(a_1, a_3)$ $r_3 = \sigma(a_1, a_2)$ and suppose that $r_1 \leq r_2 \leq r_3$ then $r_1 = r_2$.
- 4. Example: J = (0,0.2,0.4,0.6,0.8,1). $A = \{a,b,c,d,e,f,g,h,i,j,k\}$. To recognize the structure of \underline{A} it is enough to give a table of $\sigma(x,y)$, $x,y \in A$, a table of 11 x 11 square. the diagonal gives the $\alpha(x)$ and

the diagonal gives the $\alpha(x)$ and by reason of symetry, it is sufficent to replenish the inferior triangle. For the first column we can choose the value freely under the condition $\sigma(a,x) \leq \alpha(a) \wedge \alpha(a)$, $x \in A$,

but when we change the order of elements of A, it is convenient choose a decreasing sequence. By the lemma 3, the second column reproduction of the column, $\sigma(c,d)$ one. For the third may be chosen between 0.4 and 0.6, and for the rest we reproduce the second column. The sixth $\sigma(f,x)$ freely is chosen. certainly choose it decreasing. The ninth column, $\sigma(i,x)$ is freely chosen, and all the other columns reproduce the precedent ones.

So we see that in \underline{A} there are three groups of elements of A which are relatively closed to one another : $\{a,b,c,d,e\}$, $\{f,g,h\}$, $\{i,j,k\}$

and furthermore, among $\{a,b,c,d\}$ we see that a,b are close one another, and c,d are close.

- 5. <u>Definition</u>: given $\underline{A} = (A, \alpha, \sigma)$ and $r \in J$ $A_1 \subset A$, we said that A_1 is a indiscernible r-classe iff $A_1 \neq \emptyset$ and for all $a_1, a_1 \in A_1$, $\sigma(a_1, a_1) \ge r$ for all $a_1 \in A$, $a \in A A_1 \longrightarrow \sigma(a_1, a) \le r$.
- 6. <u>Definition</u>: let $r \in J$, we say that $\underline{A} = (A, \alpha, \sigma)$ is a r-direct sum of $\underline{A}_1 = (A_1, \alpha_1 \sigma)$ and $\underline{A}_2 = (A_2, \alpha_2, \sigma_2)$ and we note $\underline{A} = \underline{A}_1 \oplus \underline{A}_2$ if we have:

.
$$A = A_1 \cup A_2$$
 (i.e $A_1 \subset A$, $A_2 \subset A$, $A_1 \cap A_2 = \emptyset$, $A_1 \cup A_2 = A$, $A_1 \neq \emptyset$, $A_2 \neq \emptyset$.)

$$\sigma_{i} = \sigma|_{A_{1} \times A_{1}} \quad i = 1, 2 \quad \text{and};$$

• For every $a_1 \in A$ $a_2 \in A_2 \circ (a_1, a_2) = r$.

Remark : we can say that \underline{A}_i and \underline{A}_2 are two r-disjoints sub-objets of \underline{A} and if $a_i, a_i \in A_i$ (i = 1,2), by lemma 3. we have

$$\sigma(a_i, a_i') = \sigma(a_i, a_i') \geqslant r$$
.

In an other way, \underline{A}_{i} are two r-indiscernible classes.

7. Theorem : all J-totally fuzzy sets can be perfectly decomposed in r-direct sum, $r \in J$.

$$aL_r(\sigma)a' \Leftarrow \Rightarrow \sigma(a,a') > r.$$

Remarking that $J=\left\{0=r_0< r_1< r<., < r_n=1\right\}$. If $\underline{A}\neq\emptyset$, we can certainly suppose that $L_{r_1}(\underline{A})=A$. So the equivalent relation $L_{r_1}(\underline{\sigma})$ determines a partition on $A=L_{r_1}(\underline{A})$:

 $A = \bigcup_{i \in I} A_i^r, \text{ if } a_i \in A_i^r, \ a_j \in A_j^r \quad \text{with } i \neq j, \text{ We have } \sigma(a_i, a_j) < r_1 \text{ so } \sigma(a_i, a_j) = 0. \text{ So we obtain a 0-direct sum } : \underline{A} = \underbrace{\theta}_i \underline{A}_i^r. \text{ More clearly, we apply a pair of parenthesis of level 0 : o(,)o: if I.}$

$$\underline{\underline{A}} = \circ (\underbrace{\underline{\Phi}}_{i} \underline{\underline{A}}_{i}^{i}) \circ$$

where each $\underline{A}_{i}^{r_{i}}$ is a r_{i} -indiscernible classe, so we say that \underline{A} is decomposed in 0-sum of his r_{i} -indiscernible class. We return take the $\underline{A}_{i}^{r_{i}}$ for \underline{A} : for each $\underline{A}_{i}^{r_{i}}$ such as $\underline{L}_{r_{i}}(\underline{A}_{i}^{r_{i}}) \neq \emptyset$, the equivalent relation $\underline{L}_{r_{i}}(\underline{\sigma})$ determin a partition on $\underline{L}_{r_{i}}(\underline{A}_{i}^{r_{i}})$:

 $L_{\Gamma_{i}}(A_{i}^{r_{i}}) = \bigcup_{j \in J_{i}} A_{i,j}^{r_{i}} \text{ We have for all } a_{j}, a_{j}' \in A_{i,j}^{r_{i}} \sigma(a_{j},a_{j}') > r_{i} \text{ and for all } a_{i}$

$$a_{j} \in A_{i,j}^{r_{2}}$$
 $a_{j} \in A_{i,j}^{r_{2}}$, $j \neq j'$ $(a_{j}, a_{j}) = r_{1}$.

sum of its r_2 -indiscernible classes :

$$\underline{A}_{i}^{r} = \underbrace{\beta}_{i} \underline{A}_{i}^{r} \underbrace{A}_{i}^{r} \underbrace{A}_$$

and so we have:

$$\underline{A} = {\circ}({\theta^{1}}({\theta} \ \underline{A}_{1}^{r}, j)^{1}) {\circ}$$

$${\circ} r_{1} \ {\circ} j \in \underline{J} \ i \in \underline{I}$$

Applying at most n times this procedure, we obtain a complete decomposition of A in all its indiscernible classes. For example, we take \underline{A} as in example of 4. We have the following decomposition :

$$\underline{\underline{A}} = (((\underline{a} \quad \underline{\theta} \quad \underline{b}) \quad \underline{\theta} \quad (\underline{c} \quad \underline{\theta} \quad \underline{d})) \quad \underline{\theta} \quad \underline{e}) \quad \underline{\theta} \quad ((\underline{f} \quad \underline{\theta} \quad \underline{g}) \quad \underline{\theta} \quad \underline{h}) \quad \underline{\theta} \quad ((\underline{i} \quad \underline{\theta} \quad \underline{j}) \quad \underline{\theta} \quad \underline{k});$$

Moreover, it is possible to input this structural information of A in a computer in the form :

$$=((((1)0.8(1))0.4((0.8)0.6(0.6))0.2(0.4)) - ((((0.6)0.4(0.8))0.2(1))...(((0.6)0.6(0.6))0.2(1)).$$

8. The tree of indiscernible decomposition of a A:

In the demonstration of the theorem 7 we saw that if a, a' ϵ A $\sigma(a, a') = r_i$ there exist a unique pair of " r_i -level" parenthesis enclosing a and a': ${}^{i}(\dots a,\dots,a^{i},\dots)^{i}$. so we can draw a tree where the elements of A are considered as leaves with the value $\alpha(x)$. Given two leaves a and a', they are connected by one way by branches and $\sigma(a,a')$ is the value attribued to the lowest branch.

For example, take A as in the example of 4: its tree is the

We remark that:

.we can immediately recognize the structure of \underline{A} , $\alpha(x)$ and $\sigma(x,y)$.

.the elements we can forget are d and j (or d and i) because their are linked by horizontal branches.

.the decomposition scheme clearly appears in the tree.

.we recognize immediately the r-indiscernible classes of A. all reJ.

.by the lemma 1, we can abandon d and j which are not necessary but we can also fullfill to each level a new leave on the branches. The lemma 1 permits this inverse proceeding: obtaining a full tree of \underline{A} :

.According to the meaning of the tree we can explain many elementary

the full tree of A.

notions as morphism, sub-object of a total fuzzy set, equalizer, etc... For example, given let $\mathcal{C}_{A} = \{ \text{r-indiscernible classe} \}$ of \underline{A} r ε J, we have a morphism $R : \underline{A} \longrightarrow \underline{B}$ in bijection with a function $\widetilde{\mathbf{R}}$: $\mathcal{C}_{\mathbf{A}} \longrightarrow \mathcal{C}_{\mathbf{B}}$ such that if $x \in \mathcal{C}$ is a r-classe, so $y = R(x) \in \mathcal{C}_B$ is also a r-classe. If y' = R(x') then we have $\sigma(x,x') \leqslant \tau(y,y')$ (σ is the prolongation of σ from A to $\mathcal{C}_{\mathtt{A}}$: Ac \mathcal{C}_A since each a ϵ A is a α (a)-classe

We also can calculate the number n of sub-objects of \underline{A} : the tree is a powerful idea to study the structure of any abstract category (4);

. According to the meaning of the tree of \underline{A} we can calculate the number n of all sub-objects of A:

 $N = ((3x2)+1) \times ((2x2x3)+1)+1=92$

BIBLIOGRAPHY

0000

00

- (1) D. PONASSE: Remarque sur les Ensembles Totalement Flous (séminaire "mathématique floue", 1982-83, Lyon)
- (2) B. MITCHEL: The theory of category (Acamdemic Press, 1965)
- (3) G. MYCEK: Deux topos isomorphes d'ensembles totalement flous (thèse 3ème cycle, 1983, LYON)
- (4) T. WU: Etude Détailliée du topos JTF. Thèse 3ème cycle, 1984, LYON)