FUZZY TOPOLOGIES AND TOPOLOGICAL SPACE OBJECTS IN A TOPOS

Ulrich Höhle

Fachbereich Mathematik der Bergischen Universität-Gesamthochschule Wuppertal, Gaußstr. 20, D-5600 Wuppertal 1, Federal Republic of Germany.

<u>Abstract</u>. The purpose of this paper is to point out the link between Lowen's fuzzy topologies and topological space objects in the topos L-SET. As the main result we obtain the following theorem: Lowen's fuzzy topologies are the external version of the internal topologies in L-SET.

<u>Keywords</u>. Complete Heyting algebras, equality relations, L-valued sets, fuzzy topologies, topological space objects.

For the non-topos theorist we include a section on fundamental properties of the category L-SET, which are significant for a clear mathematical understanding of fuzzy set theory.

1. L-fuzzy subsets and subobjects in the category L-SET

Let (L, \leq) be a complete Heyting algebra and X be an ordinary set; a \underline{L} -equality_relation on_X is a map $E: X \times X \longrightarrow L$ satisfying the following conditions

- (E1) $E(x,y) \le E(y,x)$ $\forall y,x \in X$ (Symmetry)
- (E2) $E(x,y) \wedge E(y,z) \leq E(x,z) + x,y,z \in X$ (Transitivity)

The value E(x,y) can be interpreted as the degree that the elements x and y are \underline{equal} . In this context we accept the requirement that two elements can only be equal if they exist; thus E(x,x) is the degree of existence of x.

The category L-SET consists of these data (cf. [2], [3]): $\underline{0bjects} \text{ are L-valued sets and } \underline{morphisms} \text{ M} : (X,E) \longrightarrow (Y,F) \text{ are ordinary maps} \text{ M} : X \times Y \longrightarrow L \text{ satisfying the conditions}$

$$(M2) \quad M(x,y) \leq E(x,x) \wedge F(y,y)$$
 (Strictness)

$$(M3) \quad M(x,y) \land M(x,\hat{y}) \leq F(y,\hat{y})$$
 (Single-valued)

(M4)
$$\bigvee \{M(x,y), y \in Y\} = E(x,x)$$
 (Everywhere def.)

The <u>composition</u> of M₁ : (X,E) \longrightarrow (Y,F) and M₂ : (Y,F) \longrightarrow (Z,G) is defined by M₂ \circ M₁(x,z) = \bigvee {M₁(x,y) \land M₂(y,z) , y \in Y} . The <u>identity</u> of (X,E) is E .

It is well known that L-SET is a topos (cf. [2]); the subobject classifier is the object (L, $\langle = \rangle$) together with the arrow 'true' t: $\mathbf{1} \hookrightarrow (\mathsf{L}, \langle = \rangle)$ determined by $\mathsf{t}(\cdot, \lambda) = \lambda$. Moreover every morphism $\mathsf{M}: (\mathsf{X},\mathsf{E}) \longrightarrow (\mathsf{L}, \langle = \rangle)$ can externally identified with an ordinary map $\mathsf{f}: \mathsf{X} \longrightarrow \mathsf{L}$ satisfying the following conditions

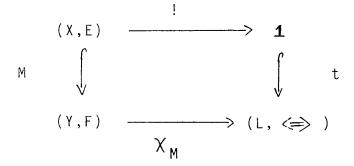
(S1)
$$f(x) \wedge E(x,y) \leq f(y)$$
 (Extensionality)

(S2)
$$f(x) \le E(x,x)$$
 (Strictness);

in particular M is given by $M(x,\lambda) = E(x,x) \land (f(x) \rightleftharpoons \lambda)$. Thus the power object P(X,E) consists of the set E(X) of all extensional and strict maps $f: X \longrightarrow L$ and the equality relation \Box , \Box defined by \Box $g,f \Box$ = $\bigwedge_{x \in X} (f(x) \rightleftharpoons g(x))$. If E_C is the <u>crisp equality relation</u> on X - i.e. $E_C(x,y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$, then every morphism

M: $(X,E_C) \longrightarrow (L, \angle = \gt)$ can be identified with a \underline{L} -fuzzy subset of X in the sense of Goguen [1]; hence the external version of the power object $P(X,E_C)$ coincides with L^X . In this context the reader may notice the fundamental fact: If $L \neq 2$, then the power object $P(X,E_C)$ of a crisp L-valued set is $\underline{never\ crisp}$ -i.e. $\underline{\square}$, $\underline{\square}$ is always different from the crisp equality E_C ; this has of course consequences in the definition of a topology in the framework of L-SET.

Since L-SET is a topos, for every monomorphism $M:(X,E) \longrightarrow (Y,F)$ there exists a unique morphism (so-called characteristic morphism) $\chi_M:(Y,F) \longrightarrow (L, \iff)$ s.t. the diagram



is a pullback, and vice-versa every morphism $X:(Y,E)\longrightarrow (L, \rightleftharpoons)$ induces in this way a unique subobject of (Y,F). In this sense subobjects of (Y,F) and morphisms $X:(Y,F)\longrightarrow (L, \rightleftharpoons)$ are equivalent concepts. The $\underline{subobject}$ of (Y,E_C) corresponding to a $\underline{L-fuzzy}$ \underline{subset} $f:Y\longrightarrow L$ is given by

$$\begin{split} & \times = \big\{ s \in L^y \mid s(y) \land s(x) = 0 \text{ for } y \neq x \text{ , } s(y) \leq f(y) \not \forall y \in Y \big\} \\ & \times \big\{ s_1, s_2 \big\} := \bigvee \big\{ s_1(y) \land s_2(y) \text{ , } y \in Y \big\} \end{split}$$

 $M: (X,E) \longleftrightarrow (Y,E_C) \quad , \quad M(s,y) = s(y) \quad \forall s \in X \quad \forall y \in Y .$

As in every category with a terminal object $\mathbf{1}$ a point of (X,E) is an arrow D : $\mathbf{1} \longleftrightarrow (X,E)$ - i.e. D : X \longrightarrow L satisfies the following conditions (cf. (M1) - (M4))

 $D(x) \wedge E(x,y) \leq D(y)$

 $D(x) \wedge D(y) \leq E(x,y)$

 $\bigvee \{D(x), x \in X\} = 1$

A point D of (X,E) is a member of a subobject M: $(Y,F) \longleftrightarrow (X,E)$ (notation: D \in M) iff there exists K: $\mathbf{1} \longleftrightarrow (Y,F)$ s.t.

D = $M \circ K$. If f_M is the extensional and strict L-fuzzy subset of X corresponding to the subobject M , then the following

assertions are equivalent :

(i) D \in M

$$(ii) \quad D(x) \leq f_{M}(x) \quad \xrightarrow{} x \in X$$

Finally we remark that for every point D of the power object $P(X,E) = (E(X), \prod, \prod)$ there exists a unique element $f_0 \in E(X)$ inducing D - i.e. $D(f) = \prod f_0, f \prod \forall f \in E(X)$.

2. Topological space objects in L-SET

First we recall the definition of a topological space object in a topos given by L.N. Stout (cf. [6]): Let & be a topos A an object of & , P(A) be the power object of A and let (\mathcal{N},t) be the subobject classifier. We denote by $\operatorname{ev}_A: P(A)\times A\longrightarrow \mathcal{N} \text{ (resp. }\operatorname{ev}_{P(A)}: P^2(A)\times P(A)\longrightarrow \mathcal{N} \text{) the evaluation arrow and by } \mathcal{N}_{12} \text{ (resp. } \mathcal{N}_{23},\mathcal{N}_{13} \text{) the projection from } P^2(A)\times P(A)\times A \text{ onto } P^2(A)\times P(A) \text{ (resp. } P(A)\times A \text{ ,} P^2(A)\times A \text{) . Further let } M: Y\longmapsto P^2(A)\times P(A)\times A \text{ the subobject corresponding to the characteristic morphism } \operatorname{ev}_{P(A)}\circ \mathcal{N}_{12} \wedge \operatorname{ev}_A \circ \mathcal{N}_{23} \text{ : Then the } \underline{\mathrm{union}} \text{ }\underline{\mathrm{map}} \text{ }\underline{\mathrm{U}}: P^2(A)\longrightarrow P(A) \text{ is the exponential adjoint of the characteristic morphism of the subobject } \exists \, \pi_{13} \text{ (M)} \text{ .}$

A $\underline{topological\ space\ object\ in\ \mathcal{E}}$ is a pair (A,TA) where TA is a subobject of P(A) satisfying the following axioms

$$(\mathfrak{S}^1)$$
 $\phi \in T_A$, $A \in T_A$

- (\mathcal{O}_{A}) B $\in T_{A}$ and B' $\in T_{A}$ implies B \wedge B' $\in T_{A}$
- (\mathcal{O} 3) If S is a subobject of P(A) with S \subseteq T_A , then $\[\ \ \ \] \cup$ $\[\ \ \] \times$ T_A , where $\[\ \] \times$ S is the name of the characteristic morphism of S .

Since in L-SET the union map is induced by an ordinary map $\Sigma : \mathbb{E}^2(X) \longrightarrow \mathbb{E}(X)$ determined by

$$\Sigma(\mu)(x) = \bigvee_{f \in \mathbb{E}(X)} (\mu(f) \wedge f(x)) \qquad \mu \in \mathbb{E}^{2}(X)$$

the axioms of a topological space object in L-SET can be rewritten

as follows: Let (X,E) be a L-valued set, $P(X,E) = (\mathbb{E}(X), [],]$ the power object of (X,E) and let μ be a L-fuzzy subset of $\mathbb{E}(X)$. The triple (X,E, μ) is a topological space object in L-SET iff μ satsifies the following conditions

$$(\mathcal{E}_0)$$
 $\mu(f) \land \prod f, g \prod \leq \mu(g)$ (Extensionality)

$$(\mathcal{O}_{1})$$
 $\mu(1_{\phi}) = \mu(1_{\mathbf{E}}) = 1$ where $1_{\mathbf{E}}(x) = E(x,x)$

$$(\partial^2 2)$$
 $\mu(f) = 1$ and $\mu(g) = 1$ \Longrightarrow $\mu(f \wedge g) = 1$

$$(\mathscr{E}^3)$$
 \forall $\forall \in \mathbb{E}^2(X)$ with $\forall \leq \mu$: $\mu(\Sigma(\forall)) = 1$

A <u>L-fuzzy topological space</u> (X,E,\mathcal{O}) consits of a L-valued set (X,E) and an ordinary subset \mathcal{O} of E(X) equipped with the subsequent properties

$$(\hat{S}_1)$$
 $\alpha_{\mathbf{E}} \in \mathcal{O} \quad \forall \mathbf{x} \in L$, where $\alpha_{\mathbf{E}}(\mathbf{x}) = E(\mathbf{x}, \mathbf{x})$ (Constants Cond.)

$$(\hat{O}_2)$$
 f, ge $O \Longrightarrow f \wedge g \in O$

$$(\hat{\sigma_3})$$
 $\mathcal{T} \subseteq \mathcal{O} \implies \forall \{g, g \in \mathcal{T}\} \in \mathcal{O}$

If we replace the Heyting algebra (L, \leq) by the real unit interval and the equality relation by the crisp equality E_{C} , then $(\hat{\mathcal{O}}1)$ - $(\hat{\mathcal{O}}3)$ are just the axioms of a fuzzy topological space in the sense of R. Lowen (cf. [4],[5]). In the following we show that L-fuzzy topological spaces are the external version of topological space objects in L-SET .

2.1 Proposition If (X,E,μ) is a topological space object, then $\mathcal{O}_{\mu}:=\{g\in E(X), \mu(g)=1\!\!\!L\}$ is a L-fuzzy topology on (X,E), and μ is given by

$$(X,E)$$
, and μ is given by
$$\mu(f) = \prod_{i=1}^{n} \hat{f}, f \prod \text{ where } \hat{f} = \bigvee_{i=1}^{n} \{g \in \mathcal{O}_{\mu}, g \leq f\}$$

Proof. The axioms $(\hat{\mathcal{O}}2)$ and $(\hat{\mathcal{O}}3)$ are evident. In order to verify $(\hat{\mathcal{O}1})$ we first observe :

that $\mu(\sum(\vee)) = \mathbf{1}$ - i.e. $\mu(h) \wedge h(\cdot) \in \mathcal{O}_{\mu} \rightarrow h \in \mathbb{E}(X)$. Therewith the inequality $\mu(h) \leq [\hat{h}, h]$ is valid - i.e. $\mu(h) = [\hat{h}, h]$.

2.2 Proposition. Let (X,E,\mathscr{O}) be a L-fuzzy topological space. Then the L-fuzzy subset $\mu_{\mathscr{O}}$ of $\mathbb{E}(X)$ defined by $\mu_{\mathscr{O}}(f) = \prod \hat{f}, f \prod$ where $\hat{f} = \vee \{g \in \mathscr{O}, g \leq f\}$ satisfies $(\mathscr{O}0) - (\mathscr{O}3)$ -i.e. $(X,E,\mu_{\mathscr{O}})$ is a topological space object in L-SET .

2.3 Corollary. Let (X,E,μ) be a topological space object in L-SET . Then the subobject $M:(Y,F) \hookrightarrow P(X,E)$ corresponding to μ is given by

Summing up L-fuzzy topologies are just the e x t e r n a l description of the i n t e r n a l topologies in L-SET . In this context it is important to note that the "Constants Condition" in Lowen's axiom system is a consequence of the categorial formulation of the topological axioms; more precisely the "Constants Condition" is just that condition which permits to internalize L-fuzzy topologies in the category L-SET . Moreover, if (X,E,μ) is a topological space object, then μ can be considered as a $\underline{L-fuzzy}$ $\underline{openness}$ $\underline{operator}$ on $\underline{E}(X)$ - i.e. $\underline{\mu}(f)$ is the degree that the $\underline{L-fuzzy}$ subset f is open. Thus the axioms $(\mathcal{O}1)$ - $(\mathcal{O}3)$ are precisely the f u z z i f i c a t i o n of the usual topological axioms .

 $\underline{\text{Acknowledgement}}$. I am very much obliged to Umberto Cerruti having drawn my attention to topos theory .

References.

- [1] Goguen, J.A., L-fuzzy sets, J. Math. Anal. Appl. <u>18</u> (1967), 145 - 174.
- [2] Goldblatt,R., Topoi, the categorial analysis of logic (North-Holland, Amsterdam, 1979).
- [3] Higgs, D., A categorial approach to Boolean-valued set theory , 1973 (unpublished) .
- [4] Lowen, R., Topologies floues, C. R. Acad. Sci. (Paris), 278 (1974), 925-928.
- [5] Lowen, R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. $\underline{56}$ (1976), 621 -633 .