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ON ANY CLASS OF FUZZY FREFLRENCE
RELATIONS IN REAL LINE
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Al the first, the fuzzy preference relation is defined by mew
ans of weak notions C2] . Furﬁhermore, the fuzzy relation "less
wr egual is presented as fuzzy preference relation in real line.
[te delinition follows from well-known properties of analogous
crige relations The connections between the fuzzy relaticn "less
oI equal" and the fuzzy relation "less than" generated by first

are showede
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i real line.
ie Llntroducticn

‘he following notions weak notions are presented in C2j s

- every fuzzy subset g : X% [0,1] such that MR
iz called a Weempty set;

- every fuzzy subset w: X->[0,1] such that O AIERYS
is called a Weuniversum; '

~ every pair of fuzzy subsets (s V) such that

Wi £=>00,1] , v: X-[0,1] and Kl = are cale
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led a Weseparated sets.
dore details about them we can find in [2] « In this paper the
tneory of fuzzy relations based on weak notions will be presented.
Obtained simple results will be used for fuzzy preference relation

inreal line interpretated as fuzzy relation "less or equal".

Ze rreliminary noticns

‘“his section contains a short list of mostiy known notions dis=-
placed from classical to the fuzzy relation theory. Proposed defi=-
nivione are based on the weak notions mentioned above. This appro-
ach 1is novel, Therefore, all considerations are presented here.

Let be given the crisp set X o The diagonal of Cartesian

product X2

we defined as the set D(X) = {(x,x): xc¢X} .
&y crisp relation (R) in X  1is described by the subset

=1 and complement R are

R o= {gx,y‘): xgy}c x° e« Its inverse R
de.'ined by the subsets R = fix,y) + (7,x)¢R}Y and E =
={(x,y) + &I ERY .

Usually we mark off the following properties of R:

- reflexivity

v XeXx

xeX

-~ antireflexivity

\4

~X0 X
xe X g ’
~ symmetry
V o X¢Y® ygx ’
(XyY)e X~

-~ antisymmetry

) v ) ; XgyY dDvYyYex ’
(Fy ¥ e X©
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-~juasi-antisymmetry

2

v 2 (x¢ 7 and y¢ x)= 5%¢ DX) '

‘x,yjeS"cX

- transitivity

v

3 X¢zand z¢y DXy o
(Xy¥y2)el A

'ransitivity can be defined equivalently as follows
\vd ,
- ~(xez and Z2¢Y) Oor X8 .
(Xyvy2)EX” ‘
ie note that above definitions base on the notions: empty set
{ antireflexivity), universum (reflexivity, quasi-antisymmetry,
transitivity) and separated sets ( antisymmetry).
A fuzzy relation (FR) in X is described by fuzzy subset
o) -
g: ¥ [0,1] . Its inverse (FR™') and complement (FR) are de-
fiped respectively by their membership functions: 9“1 (x,5) =
=g(y,x) and 3%y =1 = ¢(%¥) « Let us define the diago=
nal of FR g ac the mapping SCg] : X>[0,1] described
by identity S[g] (x) = ¢ (X,X)
oubstituting crisp notions by weak notions we propose to accepth

the following definitionse

Jetinition 2.1: An FR ¢  is reflexive iff Jd[¢] 1is a

W=universum in X o

Jerinition 2423 An FR ¢ is antireflexive iff d[¢l] is

a weempty set in X o

Jerinition 26¢3: An FR g is symmetrical iff = g .
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Delinition 2.4: An FR ¢ is antisymmetrical iff ¢ and

g"g are W-separated sets.

Def'inition 2.5: An FR Q is quasi-antisymmetrical iff the con=~

dition: " @QAg =1 is Weuniversum in Szc:X2 " is sufficient

CeD(X) .

for 3

Definition 263 An FR g is transitive iff (1 -rg(v,z)A

2 for every z2eX o

A g(z,a))v»g(~,-) is Weuniversum in X
it is very easy verify that proposed here definitions are wore
generzl than one given by Orlovsky [1] . Therefore, the next de=

finitilons are more general, too,

Pdefinition 247: An FR is called a fuzzy equivalence relation if

il is reflexive, symmetrical and transitive.

Jef'inition 248: An FR is called a fuzzy strict order relation if

it is antisymmetrical and transitives

befinition 2.9: An FR is called a fuzzy quasi-order relation if

1% is reflexive and transitive.
e Fuzzy preference relation
As iU is known, unfuzzy preferences are usually modelled by

quasi-order relation (PR)s It generates equality relation (PR,)

anu strict preference relation (PRS) defined as follows:
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PR, = FRaPR™'
Pk = PRa PR"" .

s

Let us displace this notions to the theory of fuzzy relations,
e shell assume that FR ¢ : X°-» [0,1] is specified in the
siven crisp set X o It wmil be called a fuzzy preference rela-
tion ( FFR)e Generally, we do not make an assumptions about FFR.
This approach differs from one given by Orlovsky, he assumes that
#Pr is reflexive.

Ir special case, if the FPR is fuzzy quasi-~order relation, we
shall say that the FPR is well-defined.

#irst we define ' two fuzzy relations corresponding to given
Fros fuzzy equality (FPRe) and fuzzy strict preference relation

\¥PE_) by their membership i'unctions:
P

DT ] -

PR, 8e = § Mg ’ (3e1)

T e ' y

FPR, 3 g = 8 NS . (362)
mach triplet (g, ge,g's) is called a system of fuzzy preferen=

ces (SFP) in X  generated by FPR,

in general case we obtain the next{ conciusions.
Lemma %4713 An FPRe is symmetricale

Proof': 8 = @ /\(9 )

Lemma 5423 An FPRS i8 antisymmetrical,.

Froofs g = Q/\Qf’r@S =1~ 9-141" g-’l,\(g

R
= gs 0-

furtnermere, we haves
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Thecrem %¢1: If the FPR is well=defined then the FPRe is a fuzzy

equivalence relatione.

rroof: In general we have
"Ll = SC eng™ 1= SCelndCg™3=dleI
S0, reflexivity of FFR implies reflexivity of FFR e
By transitivity of FPR we obtain
(1= ¢ (x,2)n ¢ (2,7)) vg(x,y)), % (3e3)
for every (X,Z,¥)¢ x> . Therefore, we get

(1 = ¢ o(22)A g o(2:7)Vg (%)) =

U= e(x2)n g (2Z:x)NQ (27N g ( 7,2 V(g (x,7) A g (75x)) =

i

(1 - cl(x2) A iz 2NV (1 = g (Z,X)A g (352)) V (3(X,7) A g(Fsx)) =

H

(1= ¢ X2)A g ( 2,V (1 =g ( 2,x)A g(7,2))VS(5T))A
A = 2(x,2)A g(ZINV (1 =g 2,x)AQ(7,2) v g(¥sx)))
)/ (1 - g(xsz)/\ ¢ (Z2,3)) V ‘_‘?nyy))’\ (1 - el Ys2) A gCZ.X"))Vg(y,x')))
3

Tor every (.x,z,;y)e')(5 o This inequality proves the transitivity

of FPRQ. The Lemma 3.1 puts on the end the proof.Ws

Theorem 3%4,2: If the FPR is wellwdefined then the FPRS is a fuzzy

strict order relatione.

Proor’s By (3e3) we obtain

Gio- gS(x,z)/\38(2,3))\/g5;(x,3)'=

(0= glxy2)A (1 = @z, x))AQ(2,7IA (1 = ¢ (7,2)))Vv (g (x,7)A
AU = ely,x)))= (1 =¢(x,3))velz,x)V(1 =g 2,7))ve( ¥,2)V

Vg A (= el3:x) = ({1 = ¢ %2))Vv g(2,x)v(1 -glz,3)v
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ve ¥z V(M)A = g(x,2)ve(2,x)v (1 = ¢lz,5)vgy,2)v
VT = g (XY U1 = g (xz)v (1 = e(z,7))vel X)) Alg( ZyX)V

vi{i - e (ZyINV T = e (Tyx))) = ((1 = ¢ Xy%) AQ( Zy,¥)) Vv ¢(x,¥))A

AU = g ( 2,¥) A ¢ 7,x)) Vf;’(zix))) %

for every (XyZ,yy) € x> o This fact along with the Lemma 3.2 prow

ves this tTheorem.im

¥or any fixed element ye X the mapping 5;(3,-) defines
4 f'uzzy subset of all elements in X which nonstrictly domina=
ve y . Then the intersection of all fuzzy subsets ey, )
derined for every yeX , represents the fuzzy subset of those
elements in X  which pnonstrictly dominate all elements in X .
de shall call this fuzzy subset the fuzzy nonstrict dominant in
£ o Thus, according to the definition of the intersection we de~

Uine its membership function as follows

NSD . '
k¥ s inr ety ) (3e4)
yeX
Tae value y,NSD(x) represents the degree to which the element
ks nonstrictly dominates ail elements in X o If F,NSDKX) = 1

then x will be called unfuzzy nonstrict dominant in X and
in this case we shall use the notation

UNS NSD

X Dn{x: xeXy p

Jbviously, XdNbD can be empty set.

(X) = '1} . ‘505)

Analogous way, as above, we define the fuzzy nonstrict undomi-
nant in X by its membership function
NSU

: (*) = inf § e(- ' o6
b inf {5l 7)) (3.6)



Ll unruzzy nonstrict undominant in X as subset

RU {x: xE€X MUix) = 1} . (3.7)

remarks The Tfollowing parts of this paper will be published inp

nevt Busefal.
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