RANDOM SETS REPRESENTATION OF FUZZY SETS' COUNTABLE OPERATIONS

Yang Jian Li , Fu Kiang

Dept of Math, Beijing Normal University, Beijing China.

wang Pei-Zhuang, I.R. Goodman and others have related fuzzy set to random set and constructed the structure of falling space (see [1], [2], [3]). In this paper we put forward the concept of random sets delegation with respect to fuzzy sets countable union, imtersection and complement defined by Zadeh in [7]. On the basis of [1], we go further into the problem about the relationship between the fallability and the measurability of fuzzy set.

31. Introduction

Let U be universal, $\mathcal{F}(U)$ be the set of fuzzy subsets of U, \mathcal{B} be σ -field on U satisfying $\forall u \in U \Longrightarrow \{u\} \in \mathcal{B}$. For each $u \in U$, define

$$\dot{u} = \{ B \in \mathcal{B} | u \in B \} \tag{1.1}$$

Let \mathfrak{F} be σ -field generated by $\{\mathfrak{u} \mid \mathfrak{u} \in U\}$.

Definition 1.1 Put $\mathfrak{H}(U) = \{A \mid A \subset U\}$, map $\mathfrak{F}: \mathfrak{D} \to \mathfrak{H}(U)$ is called set-valued map from Ω to U. Let \mathfrak{F} , \mathfrak{F}_t , te T be set-valued maps, \mathfrak{F}_t , \mathfrak{F}_t , \mathfrak{F}_t , \mathfrak{F}_t , \mathfrak{F}_t are defined as follows:

$$(\int_{ter} \xi_t)(\omega) = \int_{ter} \xi_t(\omega) , \forall \omega \in \Omega$$
 (1.2)

$$(\bigcup_{t\in T} f_t)(\omega) = \bigcup_{t\in T} f_t(\omega), \quad \forall \omega \in \Omega$$
 (1.3)

$$(\mathfrak{z}^{c})(\omega) = (\mathfrak{z}(\omega))^{c}, \forall \omega \in \mathfrak{D}$$
 (1.4)

$$\mathcal{U}_{\xi}(u) = P(\xi^{\dagger}(\dot{u})), \forall u \in U \qquad (1.5)$$

is called the fuzzy fall shadow of 3 . Fuzzy set A over U is

called measurable if A is 5 -measurable function; A is called fallable if there exists a random set & such that Ma=A.All measurable and all fallable fuzzy sets over U are respectively denoted by 为(U) and 为(U). If 为(U)= 为(U), we say (A,A,P; U, 为为) is complete falling measurable structure.

Proposition1.1 If T is countable, the f is closed under to c. Let (Ω,\mathcal{A},m) be any finite measure space ,for $\forall \mathcal{E}>0$, we introduce inclusion relation:

$$A = B \text{ (or } B = A) \xrightarrow{A} \text{ there is } C \in A, \text{ such that } (1.6)$$

$$m(c) \leq E \text{ and } A \setminus C \subseteq B$$

Definition 1.3 $A_n \in A$, $n=1,2,\ldots,\{A_n\}$ is called m-intersction sequence(or m-union sequence), if for \forall i, j and \forall ξ >0, there is some k such that

Proposition 1.2 {An} is m-intersction sequence iff {An} is m-union

Proposition1.3 If {An} CA, then

- (i) $m(\bigcap_{n=1}^{\infty} A_n) = \inf_{n} m(A_n)$ iff $\{A_n\}$ is m-intersection sequence.
- (ii) $m(\bigcup_{n=1}^{\infty} A_n) = \sup_{n} m(A_n)$ iff $\{A_n\}$ is m-union sequence.

Corollary1.1 If $A_i \in A$, i=1,...,n. then

- (i) $m(\bigcap_{i=1}^{n} A_{i}) = \min_{i \in i \in n} \{m(A_{i})\}$ iff there is i, 1 si \in such that $A_i \longrightarrow A_j$, $j=1,\ldots,n$.
- (ii) $m(\tilde{V}_{i}A_{i}) = \max_{i \leq i \leq n} \{m(A_{i})\}$ iff there is i, $1 \leq i \leq n$ such that $A_i \stackrel{\longleftarrow}{\longleftarrow} A_i$, $j=1,\ldots n$.
 - §2. Delegation on operations of fuzzy sets

Definition2.1 Suppose (\O, A, P, U, B, B) be a fall-shadow space, and $\mathcal{F}_{\mathbf{I}}(\mathtt{U})$ is closed under countable intersection, union and comlement defined by L.A. Zadeh in [7]. $\mathcal{D} = \{ \mathcal{F}_{A} | A \in \mathcal{F}_{A}(U), \mathcal{U}_{A} = A \}$ is called delegation with respect to fuzzy sets' countable intersection, countable union and complement (delegation for short), if any f_A and $f_{A_n}(n=1,2,...) \in \mathcal{J}$, hold

$$\mathcal{U}_{n=1}^{\infty} s_{An} = \bigcap_{n=1}^{\infty} \mathcal{U} s_{An} = \bigcap_{n=1}^{\infty} A_n$$
 (2.1)

$$\mathcal{L}_{n=1}^{\sigma} f_{An} = \tilde{\bigcup}_{n=1}^{\sigma} \mathcal{L}_{f_{An}} = \tilde{\bigcup}_{n=1}^{\sigma} \mathcal{L}_{n}$$
 (2.2)

$$\mathcal{M}_{(\xi_{\underline{A}})^{c}} = (\mathcal{M}_{\xi_{\underline{A}}})^{c} = \underline{A}^{c} \tag{2.3}$$

Proposition 2.1 Let (Ω, A, P, U, B, B) be fall-shadow space, $\{f_n\}_{n=1,2,...} \subset \mathcal{F}$, then

(i) $\underset{n=1}{\overset{\infty}{\bigcap}} \mathcal{M}_{\xi_n} = \mathcal{M}_{(\underset{n=1}{\overset{\infty}{\bigcap}} \xi_n)}$ iff $\forall u \in U$, $\{\xi_n^{-1}(\dot{u})\}$ is P-intersection sequence.

 $\begin{array}{ll} \text{(ii)} & \overset{\circ}{\text{U}} & \overset{\circ}{\text{U}} & \overset{\circ}{\text{I}} &$

From Proposition1.3 (i) is clear. We can prove (ii) in the similar way.

Proposition 2.2 For any random set f, it holds $\mathcal{M}_{f^c} := (\mathcal{M}_{f^c})^c$. Therefor \mathcal{D} is delegation as long as satisfy (2.1),(2.2).

Theorem2.1 $\mathcal{D} = \{ f_A \mid A \in \mathcal{F}_1(U), \mathcal{M}_A = A \}$ is delegation iff $\forall u \in U$,

Sufficiency. Let $\{\xi_{A_n}\}\subset \mathcal{J}$, for any $\{\xi_{A_i}, \xi_{A_j}, \forall u$, we may as well assume $\{\xi_{A_i}, (\dot{u}) = \xi_{A_i}, (\dot{u}) \in \xi_{A_i}$

IN accordance with the course of the proof we have Theorem2.2 $\mathcal{D} = \{f_A \mid A \in \mathcal{F}_i(U), \mathcal{M}_A = A \}$ is delegation iff for any f_A , $f_B \in \mathcal{D}$, $\mathcal{M} (f_A \cap f_B) = A \cap B$. (or equivalent to $\mathcal{M}(f_A \cup f_B) = A \cup B$)

§3. Existence theorem

Definition 3.1 Let $(\mathfrak{D}, \mathcal{A}, P)$ be a probability space, (i) $\mathcal{I} \subset \mathcal{A}$ is called strict nest of $(\mathfrak{D}, \mathcal{A}, P)$, if

$$((\forall T_1, T_2 \in \mathcal{I}) \Rightarrow ((T_1 \subseteq T \text{ or } T_1 \supset T_2) \text{ and } (T_1 \neq T_2 \Rightarrow P(T_1) \Rightarrow P(T_2)))$$

(ii) $\{A_{\lambda}\}_{\lambda \in [0,1]} \subseteq \mathcal{A}$ is called regular nest of (Ω, \mathcal{A}, P) if 1° . $P(A_{\lambda}) = \lambda$, $\forall \lambda \in [0,1]$;

2°.
$$A_0 = \Omega$$
, $A_0 = \varphi$;

3°.
$$(\forall \lambda_1, \lambda_2 \in [0, 1])(\lambda_1 < \lambda_2 \Longrightarrow A_{\lambda_1} \subseteq A_{\lambda_2})$$
.

(iii) $D^* = \{d^{(n)}\}a \not A$ partition sequence of Ω is called regular net of (Ω, A, P) if

$$d^{(n)} = \{ D_{i_1 \dots i_n} \mid i_{R} = 1, 2; k = 1, \dots, n \}$$

$$D_{i_1 \dots i_n} \in \mathcal{A} \quad (i = 1, 2; k = 1, \dots, n)$$

$$P(D_{i_1 \dots i_n}) = \frac{1}{2}n$$

$$D_{i_1 \dots i_n} \mid UD_{i_1 \dots i_n} = D_{i_1 \dots i_n} \quad , n = 1, 2, \dots$$

$$(3.1)$$

The regular nest is obviousely strict nest.

Lemma 3.1 Let (Ω, A, P) be a probability space, if there is subset family $\{B_{\lambda}\}_{{\lambda} \in [0,1]}$ in A which satisfys:

(i)
$$P(B_{\lambda}) = \lambda$$
 $\forall \lambda \in [0,1]$

(ii)
$$\lambda_1 < \lambda_2 \Rightarrow B_{\lambda_1} \underset{p=0}{\longleftarrow} B_{\lambda_2}$$
 $\forall \lambda_1 \downarrow \chi_{p}[0,1]$

then (\(\omega_{\omega}\omega_{\omega}\ext{P}\) has regular nest. The family satisfying (\(\bar{i}\)_(\(\bar{i}\))
is called quasi-regular nest.

Lemma 3.2 (Ω, A, P) has regular nest \Rightarrow (Ω, A, P) has regular net.

Proof. For any n-ary repeated permutation composed of 1 or 2 $i_n \cdots i_n$, define

 $f(i_1 \cdots i_n)$ =the frequency of 2's occurance in $i_1 \cdots i_n$; (3.2) when $f(i_1 \cdots i_n) \neq 0$, we define

 $g_{j}(\lambda_{1}\cdots\lambda_{n})=$ the place figure of jth 2 in $\lambda_{1}\cdots\lambda_{n}$ counting from left to right; $j=1,\ldots,f(\lambda_{1}\cdots\lambda_{n})$ (3.3) $g_{0}(\lambda_{1}\cdots\lambda_{n})=0;$

$$\sigma(\hat{\mathbf{i}} \cdots \hat{\mathbf{i}}_n) = \begin{cases} 0, & \text{when } f(\hat{\mathbf{i}}, \cdots \hat{\mathbf{i}}_n) = 0; \\ \frac{f(\hat{\mathbf{i}}, \cdots \hat{\mathbf{i}}_n)}{2 i (\hat{\mathbf{i}}, \cdots \hat{\mathbf{i}}_n)}, & \text{otherwise.} \end{cases}$$
(3.4)

Let $D_1 = A_{\frac{1}{2}}$, $D_2 = \Omega \setminus A_{\frac{1}{2}}$. Suppose $D_{\lambda_1 \cdots \lambda_n}$ has been defined, we construct $D_{\lambda_1 \cdots \lambda_n 1} = D_{\lambda_1 \cdots \lambda_n} \cap A_{\sigma(\lambda_1 \cdots \lambda_n) + \frac{1}{2^{n+1}}}$, $D_{\lambda_1 \cdots \lambda_n} = D_{\lambda_1 \cdots \lambda_n} \cap D_{\lambda_1 \cdots \lambda_n}$

(1)
$$D_{\lambda_1,\dots,\lambda_n} \cap A_{\sigma(\lambda_1,\dots,\lambda_n)} = \Phi$$

When n=1, (1), (2) is easy to test. After assuming that for n-1 (1),(2) is true, we consider any n-ary repeated permutation $\lambda_1 \cdots \lambda_n$.

When $i_n = 1$, $D_{i_1 \cdots i_{n-1}} = D_{i_1 \cdots i_{n-1}} \cap A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}) + \frac{1}{2n}}$, $\sigma(\hat{i}_1 \cdots \hat{i}_{n-1}) = \sigma(\hat{i}_1 \cdots \hat{i}_{n-1})$ $A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1})} = A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1})}$, so $D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}} \cap A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1})} = \Phi$;

When $i_n=2$, $D_{\hat{\alpha}_1\cdots\hat{\alpha}_{n-1}}=D_{\hat{\alpha}_1\cdots\hat{\alpha}_{n-1}}=D_{\hat{\alpha}_1\cdots\hat{\alpha}_{n-1}}=D_{\hat{\alpha}_1\cdots\hat{\alpha}_{n-1}}$ $A_{\sigma(\hat{\alpha}_1\cdots\hat{\alpha}_{n-1})+\frac{1}{2^n}}$ $C(\hat{\alpha}_1\cdots\hat{\alpha}_{n-1})=C(\hat{\alpha}_1\cdots\hat{\alpha}_{n-1})+\frac{1}{2^n}$, then $A_{\sigma(\hat{\alpha}_1\cdots\hat{\alpha}_{n-1})}=A_{\sigma(\hat{\alpha}_1\cdots\hat{\alpha}_{n-1})+\frac{1}{2^n}}$

therefor $A_{\sigma(\lambda_1,\dots,\lambda_{n-2})} \cap D_{\lambda_1,\dots,\lambda_{n-2}} = \phi$, so (1) is teue. We hope to prove (2).

When $i_n=1$, $D_{\lambda_1,\dots,\lambda_{n-1}} = D_{\lambda_1,\dots,\lambda_{n-1}} \cap A_{\sigma(\lambda_1,\dots,\lambda_{n-1})+\frac{1}{2n}}$,

Agri, wind 1)+i=Agric wind)+in CAgric wind)+in (With inductive hypothesis)

 $= A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1})} \cup D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-1}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}) + \sum_{i=1}^{n} \sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})} \subset D_{\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i}} \text{, then } A_{\sigma(\hat{\lambda}_1 \cdots \hat{\lambda}_{n-i})}$

 $A_{\sigma(\lambda_1 \cdots \lambda_{n-1})} \rightarrow A_{\sigma(\lambda_1 \cdots \lambda_{n-1})} \rightarrow D_{\lambda_1 \cdots \lambda_{n-1}}$, from (1)we know

When in 2, Din ... in 2 = Din ... in - A (i) ... in + 1 - A (i) ... in + 1 - A (i) ... in + 1 + 2 - A (i) ... in +

 $= A_{\sigma(\lambda_1 \cdots \lambda_{n-1}) + \frac{1}{m-1}}(\text{with inductive hypothesis}) \subset A_{\sigma(\lambda_1 \cdots \lambda_{n-1})} \cup \tilde{D}_{\lambda_1 \cdots \lambda_{n-1}}$

Theorem 3.1 A complete falling measurable structure (\(\Omega, A, P, U, B, \frac{\delta}{\delta}\)) has delegation iff (\(\Omega, A, P\) has regular nest.

Proof. Necessary. Suppose $\mathcal{D} = \{\mathcal{B}_{\mathcal{A}} \mid \mathcal{A} \in \mathcal{F}_{1}(U), \mathcal{H}_{\mathcal{A}} = \mathcal{A}\}$ is delegation, then $\forall u \in U$, $\{\mathcal{F}_{1}(u)\}$ is a quasi-regular nest, fome which

we can construct a regular nest of (Ω, A, P) by useing lemma 3.1 Sufficiency. Since (Ω, A, P) has a regular nest so it also has net $D = \{D_{i_1} \dots i_n\}$ for $n \ge 1$, we use a transformation (see [2])

$$\theta_1: (\lambda_1 \cdots \lambda_n) \longrightarrow (\lambda_1 - 1, \cdots, \lambda_n - 1), \qquad (3.7)$$

$$\theta_2: (\hat{\jmath}_1 \cdots \hat{\jmath}_n) \longrightarrow \hat{R} \stackrel{\triangle}{=} (\hat{\jmath}_1 \cdot 2^{n-1} + \hat{\jmath}_2 \cdot 2^{n-2} + \dots + \hat{\jmath}_n) + 1$$
 (3.8)

 $\theta_2 \circ \theta_1$ is a one-one correspondence between $\{(\hat{\lambda}_1 \cdots \hat{\lambda}_N) | \hat{\lambda}_k = 1, 2; k=1, \ldots n\}$ and $\{1, 2, \ldots, 2^n\}$. Let $\ell = \theta_1^{-1} \circ \theta_2^{-1}$, indicate

$$B_{\mathbf{k}}^{(n)} \triangleq \bigcup_{k=1}^{k} D_{\mathbf{e}(\mathbf{k})}, \qquad (k=1,\ldots,2)$$
 (3.9)

It is easy to see $B_k^{(n)} \in A$, $P(B_k^{(n)}) = \frac{1}{2}n$, for any $A \in \mathcal{F}_1(U)$, i.e. A is measurable, we define $G_A = \bigcup_{k=1}^{n} \bigcup_{k=1}^{n} B_k^{(n)} \times \{u \mid A(u) > \frac{1}{2}n\}$, and $f_A(\omega) = (G_A)_{\omega}$.

Where G_A is random set and $\mathcal{M}_{A} = A$. We deduce $G_A \cup G_B = G_{A \cup B} \Rightarrow f_{A \cup B} = f_A \cup f_B \Rightarrow \mathcal{M}_{A} \cup f_B = A \cup B$. We get the conclusion that $\{f_A \mid A \in \mathcal{F}_1(U)\}$ is delegation from the theorem 2.2.

For a probability space owning a regular net, we may construct a complete falling measurable structure, and immediatly gain the inverse proposition of lemma3.2 from Theorem 3.1. By the way we get a result on probability space: A probability space has a regular nest iff it has a regular net.

Theorem3.2 A complete falling measurable structure $(\Omega, A, P; U, B, B)$ has delegation iff (Δ, A, P) has regular net.

For next section's discussion, we introduce the following definition.

Definition 3.2 $\mathcal{D} = \{ \mathcal{L} \mid A \in \mathcal{F}(U) | \mathcal{L}_A = A \}$ is called single-nest delegation on the fall-shadow space $(\mathcal{D}, A, P; U, B, B)$ if there is a strict nest \mathcal{F} on (\mathcal{D}, A, P) such that $\forall A \in \mathcal{F}(U)$ and $\forall u \in U$ satisfys $\mathcal{F}(u) \in \mathcal{F}$.

§ 4. The measurability and the fallability

About the measurability and the fallability of fuzzy sets, [1] has got (see[1] Theorem2)

Theorem 4.1 Let $(\Omega, A, P; U, B, B)$ be a fall-shadow space, if (Ω, A, P) is sufficient for (R, B_0) , where B_0 is the Borel field on R, then a given fuzzy subset A of U is always fallable provided that A is (B, B_0) -measurable.

We say that a probability space (Ω, A, P) is sufficient for a given measurable space (X, B) if for any probability measure m defined on B, there is aA-B measurable mapping $f: \Omega \rightarrow X$ such that

$$m(B) = P(f^{-1}(B)) \quad \forall B \in \mathcal{B}$$
 (4.1)

IIJ did not answer whether the invers prop of Th4.1 is true. Here we weaken the need of the Th4.1 and in terms of delegation give a sufficient and necessary condition. It is pity that the problem is not completely sovled.

Lemma 4.1 If (Ω, A, P) is sufficient for (R, B_o) , the (Ω, A, P) has regular nest.

Theorem 4.2 Let $(\Omega, A, P; U, B, B)$ be a fall-shadow space, If (-1, A, P) has regular nest, then any measurable fuzzy set A of U must be fallable.

Proof. Since we can construct a regular net from a regular nest, given a measurable fuzzy set A, we can make a random set such that $\mathcal{M}_{A} = A$, by using the analogous method.

Accoding to lemma4.1, we know the Th4.1(i.e.Th2 in 1) is the direct corollary of the Theorem.

Lemma 4.2 Let $(\mathfrak{Q}, \mathcal{A}, P; U, \mathcal{B}, \mathcal{B})$ be a fall-shadow space, and $(\mathfrak{Q}, \mathcal{A}, P)$ have a regular nest $\{B^{(\lambda)}\}_{\in \mathbb{N}}$ then fallable fuzzy set A is measurable iff there exists a random set? such that A = A and $\{f^{(\lambda)}\}_{u \in U}$ is a strict nest.

Proof. Necessary. A is measurable fuzzy set, $\forall u \in U$ let $F(u)=B^{(\lambda)}$ if $A(u)=\lambda$, thus this determines the mapping $F: U \to A$.

Define $f(w) = \{u | w \in F(u)\}$, $\forall w \in \Omega$ (4.2)

If \S is random set, then $\S^1(u)=F(u)$, therefore $\mathcal{U}_{\S}=A$ and $\S^1(u)$ become a strict nest. This shows need to only prove is random set, further more, we need only to show $\forall \omega \in \Sigma$, $\S(\omega) \in S$. We have a natural correspondence between $\{B^{(\lambda)}\}_{\lambda \in [0,1]}$ and [0,1], so the topological properties of [0,1] can be carried into $\{B^{(\lambda)}\}_{\lambda \in [0,1]}$. Thus we may suppose that $\{F(u_n)\}$ is the countable dense subset of $\{F(u)\}$, then

 $E = \bigcap_{\omega \in F(u_n)} F(u_n) \in \mathcal{A}$ Let $P(E) = \lambda_o$, clearly to show

$$\{u \mid \underline{A}(u) > \lambda, \} \subset \xi(\omega) \subset \{u \mid \underline{A}(u) \ge \lambda, \}$$
 (4.4)

If there is $u_{\circ}, \underline{A}(u_{\circ}) = \lambda_{\circ}$ such that $u_{\circ} \in f(\omega)$, then $\omega \in F(u_{\circ}) = B^{\lambda_{\circ}}$.

Besides, since $F(\{u \mid \underline{A}(u) = \lambda_{\circ}\} = B^{\lambda_{\circ}} = F(u_{\circ})$, then $\forall u, \underline{A}(u) = \lambda_{\circ}$, and $\omega \in F(u)$ i.e. $u \in f(\omega)$, so we have

Sufficient. Suppose that there is \S shch that $\mathcal{U}_{\S}=A$ and $\{\S^{-1}(\dot{\mathbf{u}})\}_{\mathbf{u}\in U}$ is a strict nest, then \S (ω)= $\{\mathbf{u}\mid \omega\in \S(\dot{\mathbf{u}})\}$, For $\forall\lambda\in [0,1]$, if all \mathbf{u} hold $\mathbb{A}(\mathbf{u})>\lambda$ or all \mathbf{u} hold $\mathbb{A}(\mathbf{u})<\lambda$, then $\{\mathbf{u}\mid \mathbb{A}(\mathbf{u})>\lambda\}=\Omega$ or $\Phi\in \mathcal{B}$. Now we assume there are some \mathbf{u} hold $\mathbb{A}(\mathbf{u})<\lambda$ and some \mathbf{u} holds $\mathbb{A}(\mathbf{u})>\lambda$, let $\mathfrak{F}=\{\S^{-1}(\dot{\mathbf{u}})\mid \mathbb{A}(\mathbf{u})<\lambda\}$ be a strict nest, and $\mathfrak{F}^{(\mathbf{u})}\}_{\mathbf{u}\in \mathbb{Z}}$, $\mathfrak{F}^{(\mathbf{u})}$ be increasing and $\mathfrak{F}^{(\mathbf{u})}$, there is some $\mathbb{N}: \mathbb{F}^{(\mathbf{u})} \supset \S^{-1}(\dot{\mathbf{u}})$ when \mathbb{N} . Let $\mathfrak{F}=\{\S^{-1}(\dot{\mathbf{u}})\mid \S^{-1}(\dot{\mathbf{u}})\supseteq \mathbb{F}^{(\mathbf{u})}\}$ then $\{\mathbb{U}\mid \mathbb{A}(\mathbf{u})>\lambda\}=\{\mathbb{U}\mid \S^{-1}(\dot{\mathbf{u}})\in \mathfrak{F}\}$

In fact, obviously $\{u \mid A(u) > \lambda\} \supset \{u \mid 3^{\dagger}(\hat{u}) \in \mathcal{G}\}$, moreover $\forall u \in \{u \mid A(u) > \lambda\}$, when $u \notin \{u \mid 3^{\dagger}(\hat{u}) \in \mathcal{G}\}$, imply $\S^{\dagger}(\hat{u}) = \bigcup_{i=1}^{\infty} F^{(i)}$, then

 $A^{(w)}=P(S^{(u)})=P(\mathcal{O},F^{(w)})\leq \lambda$, this is a contradictory.

Let $\{G^{(u)}\}_{n=1,2,\dots}$ \subset \mathcal{G} be a decreasing sequence and $\forall \S^{\dashv}(\dot{\mathbf{u}}) \in \mathcal{G}$, there is some N: $\S^{\dashv}(\dot{\mathbf{u}}) \supset G^{(u)}$ when $n \geqslant N$, If \mathcal{G} has the minimal element G then $G = \bigcap \mathcal{G}$, for any $\omega \in G$: $\S(\omega) = \{u \mid \S^{\dashv}(\dot{\mathbf{u}}) \in \mathcal{G}\} = \{u \mid A(u) > \lambda\} \in \mathcal{B}$

Now we suppose that \mathcal{G} has no minimal element, without loss generality providing $\{G^{(u)}\}$ are different, drawing $\{\omega_n\}: \omega_n \in G^{(n)}$ for then $\{u \mid \xi^{-1}(u) \in \mathcal{G}\} = \bigcup_{n=1}^{\infty} \xi(\omega_n)$ (4.7)

In fact, always $\bigcup_{n=1}^{\infty} (\omega_n) \subset \{u \mid \xi^{\dagger}(\dot{u}) \in \mathcal{G}\}$, on the other hand, drawing any $u \in \{u \mid \xi^{\dagger}(\dot{u}) \in \mathcal{G}\}$, there is some n: $\xi^{\dagger}(\dot{u}) \supset \xi^{(n)}$, then $\omega_n \in \xi^{\dagger}(\dot{u}) \Longrightarrow u \in \xi(\omega_n) \subset \bigcup_{n=1}^{\infty} (\omega_n)$, thus (4.7) is true, from (4.6) and (4.7) we know $\{u \mid A(u) > \lambda\} \in \mathcal{B}$. Consequently A is measurable.

Theorem 4.3 Let $(\Omega, A, P; U, B, B)$ be fall-shadow space, and (Ω, A, P) have regular nest, then any fallable fuzzy set A is measurable iff $\mathcal{F}(U)$ has single-nest delegation.

On the codition given in [1], we have

Corollary4.1 Let $(\Omega, \mathcal{A}, P; U, \mathcal{B}, \mathcal{B})$ be a fall-shadow space, and (Ω, \mathcal{A}, P) be sufficient for $(\mathbb{R}, \mathcal{B}_0)$, then the fuzzy sets are measurable provided that they are fallable iff \mathcal{F}_1 (U) has single-nest delegation.

Reference

- [1] Wang Pei-Zhuang, Sanchez, E. Treating a fuzzy set as a fallable random set, Fuzzy Information and Decision Process', Edited by M.M. Gupta, E. Sanchez, North-Holland Publishing Company, 1982,213-219
- [2] Wang Pei-Zhuang, Zhang Nian Lun, Fall-shadow space-probability description of fuzzy set, Journal of Math. Research and Exposition, vol. 3 No. 1 Jan(1983) 163-178
- Goodman, I.R. Fuzzysets as equivalence class of random sets, Recent Developments in Fuzzy Set and Possibility Theory, Edited by Yager, R.T. 1981
- [4] Nguyen, H.T., ON random sets and belief functions, J. Math. Anal. & Applic., 65,531-542,1978
- [5] Kwakemaak, H., Fuzzy random variables, I., INFO.SCI., 15, 1-29, 1978
- [6] Kendall, D.G., Fundations of a theory of random sets, Stochastic Geormetry, New York, 322-376, 1974
- [7] Zadeh.L.A., Fuzzy sets, Inform. and Control 8(1965), 338-353
- [8] Zadeh.L.A., Fuzzy sets as a Basis for a Theory of Possibility, Memorandum 7/12, Electronic, Research Laboratory, Berkely, 1977