68

SQUARE LATTICE AND FUZZY NUMBER
Peng ZuZeng
Wuhan Institute of I{ydraulic and

Electrical Engineering, Wuhan, Hubei, China

ABSTRACT
ia tWis paper we try to establish the notion of a square lattice in order to lay an analytic
foundation for those notions like fuzzy number and so on,
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L SQUARE LATTICE

Vo2t oo roasoning here, X is always supposed to be a nonempty set, and x, y, z, u, v,
woor o, be oo, be members of X,

initien 1.1, Lot o+ be an aleebraic eperation on X,<C be a partial ordering on X, <ZX, +, <>
ivoa > oindvice 3

¢1 0 N, = is oa commulative semigroup with zero clement 0,1f x +y=x+2z, then y=2;

(T Y N, =0 isalatiice and order—completeli,e, yECX, if £ has upper bounds, then E

LS A supremumy,

- X, 0z such that x+z=y; x+y=xVy ilf x y=0,where x\Vy and xAy
Gemore 1espectively the supremum and the inflimum of {x, y}.
“x< 0" s oour passage will be often denoted by “yz=x”
Example 1. o0 R be ltuclid n—space, x, yER®, x=(X1, Xy vy Xy ¥y=(¥1, Yu» *=»¥a). Put
Wom v (N E ey, ey Xty x<y I x;<{y; for 1=1, 2, -, n.Then<IR", +, << >isa
squave iatiice,

v . - . T A
Example 2, Lot N be the set of posilive integers, when m, n€N, putm+n=m+n-1, m<n

P O, Ther N, o+, =1 2> satisiies condition (1) and (1) in the definition 1,1, Butit

doesn’t satisfices( ), hence is not a square lattice,

.ns in the definition 1,1 occur quite commonty,the mutual independence betwecn

them is o ious, Lel’s discuss some clementary properties of the square lattice,
Property 1. ! x<{y, then xAz<{y Az, xVz<{y\Vz for arbitrary z,

Property 2. x "y<<x\/v for arbitrary x, y, xVVy=xAy iff x=y,
Proserty 3. If x<0v and u<{v,then x+u<{y +v,In particular, if x<{y, then x+z<{y +2z for ar-
bhitrary =z,
Proof, Sinc 1<y, Jw,;=0 such that x+w;=y,.Since u<lv, Aw,=0 such that u+w,=v Thus
x~—ud+ (w, = uw.)=y+v, wi+w,=w,=0, and x+u{y+v 2

Properiy 4. |7 x<Zy, then there exists a unique z:=0 such that x+z=y,

Prosf, since x<{v, by ( §) 9z=0 such that x+z=y,In case Jz*>=0 such that x+z*=y,



Then z¥=2 by ( 1) 4 69
For convenicnce’ sake, we’ll introduce some more signs,

Definition 1.2, Let X be a square lattice,x, y, z€E X, We write z=y-x iff x+z=y,

By ( 1) and property 4 it is casily seen that y—x is uniquely determined by x and y, How-
ever ¢ N, = )is only a semigroup, —x is not necessarily a member of X, hence y-—x is
an integral sign.From ( T ) we deduce that when x<{y, y—x€ X, at the same time y—-xz=0,
From the definition we get directly that if y-x€ X, then(y—-x) +x=y,what’s more, x~X
=0, And, if «+y<{z, then xz~vy,

Property 5. let x, x,€X, yA€A, and {x;},., be bounded,Then

x+ V xi= V (x+X3),
AEA LEA

x+ Vx= A (x+x)),
A EA AEA

Proof, Since x;<C A x5, VAE A, so that x+x,<x+ V x;, for all A€ A, Hence
AtA AEA

\/ (X+XA)<X+ \/ Xie
WA ACA

Also, since x+x, <<V (x+x3), VAEA, then x;<<V (x+x,)~x, YAEA, so that \/Axk<
A6A AE

WEA

Y (x+x,)~x,Hence
LA

x+ V<KV (x+x,) .
MEA AEA
Thus

x+ AXx, = Ax+x)).
AeA AEA

The proofl of the scecond assertion is analogous =+

In particular, {or arbitrary x, y, z€X, we have

x+yVez=(x+y)Vx+2z), x+yAz=(&x+y)A(x+z2),
Froperty 6. X+y=xA\y+x\Vy
Proof, et XAy +tu=x, xA\y+v=y. By property 5,

xAy+uivE (AYFWAEAY+H V) =xAY,

By property 1, we obtain uAv=0, By(E), uVv=u+v, So that

XAYVFuU+v=xAy+uVv== AT+ VEAY+V)=xVy,
Hence

XAy +u+xAy+v=xVy+xAYy.

That is

x+y=xVy+x/\y %
Theorem 1.1 . Let X be a square lattice, Then, for arbitrary x, y z€X we have
xVy-xAy<<xVz-xAz) +(ZVy-zAY).
Proof., [iv nroperty 6, we have
xAz+zAy=(xA2)VEAY) + AN CAYIZAVY) +zAEAY).
Since z,\(x' y)<z, zAN(xA\y)<x/\y.By property 3, we obtain xAz+zAy<z+xAy, So that
x+y+xAz+zA\y+xA\z+zAy<{x+z+y+z+xAY+xAY.
With property 6, we get immediately the result,

2, CONVERGENCE PROPERTIES OF SEQUENCES IN A SQUARE LATTICE

Definition 2.1, Let X be a square lattice.x,€X, {X,}een be bounded, Write

@ w o e
IimX, = /\ ‘\/ Xk o men: /\ Xk,
M. 1-1 k=8 3% B=] k=2 '
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limx, and lim x; is called superior limit and inferior limit of {x,}, respectively,If, and only

M~ o

if lim x.=1lim x,=x, we say that the limit of {x,} exists, and we write x,—»x, or lim X,=X,

o o P

Obviously, if x,=x,=-=x,>-, and is lower bounded, thenlim x, exists, and

R

X = 11m X, = /\ Xa
=1

R=p0

Hox <x,<{--<x.<-, and is upper bounded, then lim x, exists, and
"y~

x=1lim X,= V X,

b 2=y
In addition, lim x.<{lim x, is obvious,
n-$ < Dew s

Theorem 2.1, Let X be a square lattice, x,, y,€X, Yyn€N, lim x, and lim y, exist, then

Lwp e R=pie

lim (X,4+¥:) = lim x,+ lim¥a..
s

n= o B>z

Proof, It is easily proved that
lt\/l (xn+Yu)<.r\?l Xo+ H\Z}".
for arbitrary {x,} and {y.}.

Now, suppose that x, 4, y.4, and x= “i/ Xey ¥ = \7 Yoy U= \7 (X, +¥a). Since x, and y, are
n=1 n=y neq

monotone incrcasing, X, + ya<cu for arbitrary n and m,Keeping m fixed, and taking the sup for
n, from property 5 in section | we obtain x+yn.<{u, ym,Also, taking the sup for m, we get
x+y<<u.Thus, when x,4x and y,4y, the assertion is true,The same assertion holds when

applied to the case where x.{ x and y,}v.

Since \/ (xe+y00<<V X+ V ¥i, VN, but V/ xed, V ye ¢, so we obtain
k=n PR =8

2] g~
lim(X,+ y.)<lim X+ 1lim Yo =X+,
QOn the other hand, since
k/\ ut+ A Ve A (xxtye), vo
~n k=n

k™o

but 7\ x. 1, /< y. %, we obtain

k*n k~n

lim x.+ lim Yn:li}.‘?xn'*'lif%} yn<,ﬁ.’2(xa+}ﬂ').

nre inds o o
Hence

lim(x,+y.) =1lim x,+lim y. &

e ne. o e 2

Theorem 2.2. Let X be a square lattice . x,€X, yn,Then x,—»x iff xAx,—»x and xVx,—>x,

Proof, Suppose that x,—»x, we have

o

1=V A 1<V A GVID<SKA V(xVx) =

=1 k=n =1 k=n ™l k"”a

7\ (X\/(\7 X)) = /§ \7xu=x
n*] k=n a~1 k*

So, x\ x.-»x,xAx.>x can also be proved in the same way,
Suppose that x\Vx,»x and xAx.>x,Since
A X xe<<xVX,



Hence x;»>x & 71
Definition 2,2, Let X be a square lattice, x,y€X. Put
p(x, ¥)=xVy-xAYy,
p(x, y) is called a generalized distance of x and y,
Through definition 2,2 and theorem 1,1 in section 1, we clearly have,
(1) ptx, 285 p(x, y)=0iff x=y,
(2) plx, )=ply, x), VX, YEX,
(3) p(x, yI<p(x, 2)+p(z, ¥), VX, ¥, 2€X,
Theorem 2.3. Let X be a square lattice, x,€X, x,>x iff

lim p(x,x,) =0,

Proof, If x,—»x,then x\/x,»x and xAx,->x by theorem 2,2, Since

¢ (xV/x) = ( V (xVxy) — kR(xAxk>>+ /‘i (xAx1).
.~ n k= o “n

but (\7 (x\/xg) — ,;\ (xAx)) {4, and it is of lower bound 0, letting n-—>oo, by theorem
-

k™o n
we obtain
x=lim( V (xVx)— A (XAX)) +x,
n™ k=o k™p
Hence

lm¢ v/ (xVx) = AxAxd) =0,

p®*¢ k-n k=8

Notice that
e<x\/xn—xAxn<\?<xvxk>—k7’\ (XAXL),
=0 -3

Thus it can immediately be obtained
lim(x\/x,—x/A\Xx,) =6,

ne o

i.e, limp(x,x,)=0

Conversely, let xV/x,-xAx,—~>8, Since

X\\/Xn: (x\\/xn_x/\xn) +X/\xlo

So that
x<x V<Y (Vxe-xAx) + 5, va,
Thereby
132 (x\V/x,) = 1:1%?? (xVx)=x,
That is

xVx,—>x,

By x\/xkg'\y,? (x\/Xx—XAX) +xAxy, Vk=n,with property 5 in section 1, we oblain
L=n

5.. (x\Vx3) <k\§/n (xV/Xp— XA XE) +Z\. (xAxy).

Hence

x=lim (xVx,)<lim (x Ax,)<lim (xAx)<lim (xVX,) =X,

That is x,/\x-—>x, Thereby x,~»x, #*

2.1

Theorem 2.4. Let X be a square lattice, x,€X, yn, lim x, exists, Then it is nccessarily
Depoo

unique,

Proof, Lect x,—»x, also, x,~y. Then
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p (X, y)<<p(X, X)) + p(Xa y)—>0, as n—»oo,
1,0

>

Definition 2.3, Let X be a2 square lattice, x,€ X, yn, If there exist u,€X, u,=u,>-2u,>

. oelx, =0, Thereby x=y,

vy v =0 such that

2=
(X0 Xm)<Tun, as n, m>=N,
thea {¥,} is called a generalized elementary sequence,
Theorem 2.5, The generalized elementary sequence in a square lattice is convergent,
Proof, Since x,V/x,—-% Ax,<<uy, yn. Hence

0 VESu, + XA XSu + %5, Y,
Thereby 7 x,<{u,+X,, i.e. {X.} is upper bounded, Similarly, {x,} is lower bounded, Put

lim X, =x, limx, =y,
NP 2

0~ >

then

p(x, k\/ %), p(A Xi, y)—>0, as n—>oo,
-n k=2

0<p(x, <px, 7 x0) +pCV X0 A X0 +p(A X0 1),

Since 5,0 " = XA Xty as k=n, i.e, X VX eZlua+ XA\ Xk, by X, Axe{x, we see that x,.V/xy

ot ng, vhioza, Hence VY xeCun+ %, By x.VVxe>x, we see that x,<Cu.+ x, A X, Vk==n, Hence
kzﬂ

Wesiug+ N vy, Therchy

o\, A x) =V - A i<luc+up—>0, as n—>oo,
g=n p=n k=n k=0

Hence pix,y)=0, i,e, x=y, =
Definition 2.4, let X be a square lattice, a, b&X and a<{b, Put

Ta,bl={x]a{x<b},
la,b] 15 called a square body on X,
Theorem 2.6, lL.et [a,b,] be a square body on X for all n€éN, and [a,,b,]2[a,b,] 33
lag bo 132+, n{ag b.)—=0, as n-»oo0,Then there exists a unique x€ X such that x€[a,b,] for
all n @ N, ‘

Proof. Put x= Y 2oy y:K be, then for all n€N, we have x,y€[a,b.]. Since
ney

ae]
B (x, y)<p (X, 22) +p (a0, by) +p(bey y)—=0,
so that x =y, =
Definition 2.5, Let X and Y be two square lattices, f X—=Y is continuous at x€X 1iff for
arbitrary . »x implies f(x,)=f(x), If { is continuous at every point of X, then f{ is said to
be a conrinuous mapping of X into Y,
Theorem 2.7. Suppose f and g are mappings of X into Y and they are continuous at x, Put
(f+g) (x) ={(x) +g(x),
then f+g 1s also continuous at x,
Topological structure of a square lattice given by a square body will be dealt with in another

paper,
3. FuZzZY NUMBER

Definition 3.1. Suppose that A is a fuzzy subset on R, pais its membership function, and
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suppose it satisfies the following conditions,

(1) Tor arbitrary a€(0, 11, A;={x|ur (x)=a} is a bounded closed interval;

( 2 ) There exists a unique a€R such that pa(a) =1,

Then A is called a fuzzy number or fuzzy a, which we denote by a, For convenience’ sake,
o~ ~

we use the a (x) to denote the grade of membership of x in a,

~

By definition 3,1 it is easily seen that a is a convex fuzzy subset of R, i,e, a(x)Aa(z)<a(y)

for arbitrary x<{y<(z. A general real number a can be regarded as a fuzzy number, and

1, iff x =a,
a(x) =
~ 0, otherwise,

In particular, suppose that a is a fuzzy number and a(x) =0 for arbitrary x<’a, then a is

~

call=d a partially large fuzzy number, If a (x) =0 for arbitrary x>a, then a is called a par-

~

tially small fuzzy number, In the following passazd we shall use FN(R) for all fuzzy num-
bers, I'M(R) for all partially large fuzzy numbers and FS (R) for all partially small fuzzy
numbers, _

Hoa€ FN(R), write ai=[m.), My™7, then az=[a,M,*] when a€ FM(R); a3= [m.!", a]
when a€ FS(R),

Definition 3,2, Suppose a2, bEFM(R),

(15 a+bD 11 aefasb, My® M7,
~ ~  ar{n11
C 2 a<<*b iff 0CMp® - MWLM - M), for arbitrary a<{B (a,B€ (0,17]).
Lemma 1, FM(R)Y, +> is a commutative semigroup and (i) general number 0 is its zero

elementy (i) if a +bh =a + ¢, thenb =

.
~ ~ ~ ~ ~

c
Lemma 2, let a, bEFM(R), a{*b iff 3 u€FM(R) (B<<{*u ) such that a+u =b,

Proof Suppose that a<C*b, then a<(b, Put

~

u= [ J a.[b_'a’ Ma(b)_Ma(a)jo

ag (0313

It is casily scen that u€ FM(R) and a+tu=bh,

o~

Conversely, suppose that 0<<*u and a+u =b, Since u=0 and u{Mp<M.") for arbitrary

as{p. Hence
0<SMa(®) = Mpt®) — M™M= M () = M), #
Lemma 8. <(FM(R), <*> is a lattice and (i)a+b= a\/b+ aAb; (ii)<{* is order—complete,

Proof let a ,b€EFM(R) be given and a<(b, Put

uo= |J alb—a, Ma®—al, vo= 1) a-l0,M,(*'~a],

~ {0313

Then u,, v, € FM(R) and a +uy=b +v0é__b’.
Now suppose that u,, vy EFM(R), yvA€E A, and{u}icas {va}rcr are sets of allu, v, respectively
which satisfly a +u =b + v<{b¥*, We have

(1)a=[b-a, MoV, (v)a=00,Ma{"V1, VAE A
Ubviously A3, Put



M) = 5nf M0, 4M,L("'> =inf M_O0),

L EA ACA
Write
u= || waelb—a, M1, v = U a0, M7,

~e w0 eg(0 11
. m C’ u 1
Since if ¢, then b—asKMpe0<IM %), YA€ A, Thereby b—-aMpM<IM, ) and M;®=b -a,

therefore u & PM(R)Y, The proef of v €FM(R) is done inthe same way,

VV() 2\1\‘, ays pave
e M MO = ML B 2 MM, @) 4+ M (D)
for vAE A ind yva€ (,1),Hence
Dl ML 4 in M9 = M )+ inf MO0 <KM@+ M (0)
A MoA
Thereby a+u=b+b¥, Put

i~ ~ o~ A~ ~

h**¥*=at+u=b+v,

~ e~ e e

then b*% §, an upper bound of {a, b}, it is also a supremum of {a, b},
~ ~ o~

1y

Pul a¥* =da+ by —=Db#*%, 1t is easily proved that a* is an infimum of {a,b},Hence <FM(R),<*)>

~ ~ ~ ~

is o lavtice and we have a®*+b¥*= a/b+a\/b=a+b evidently,

~ o~ ~ A~ A~ ~ o~ o~

Now suppese that a, CUMMR), vA€A, {a}.., are bounded above, and ACFM(R) is a set

of all uppor bound of {a,}.., then Axd, Let u€A, Put uz=Lu, M7, and write

a =infu, M, ®) =inf M,
wi g g A
We can alse prove that a = 11 aefa,M.,®'] is a supremum of {a,};¢y. Thereb * is order
f (st s Mg V€A Y
~ a4 i ~

7~C()m;>‘l<»%", "
Theorem 3.1, <FMD, +,<*> is a square latlice,

Notice that a€ FS(R)Y, then a;=m,®), a],Put
—a= U qf-2a,-m/S ],
~  eg(0913

then —a€ FMOR),
Definition 3,8, Let a, bEFS(R).

1 ;1+b/;\

~

-I(=a)y+ (=M1,

) as(**h iff —a<*-b in FMR),

—~ ~ ~

(

o]

Theorem 3.2. <{IFS(R), +,<** is a square lattice,
Observe that if a€ IFN(R), then a,=[mg!", M7,
et

a** = | | a‘[ma(a)y aj, a*= U a-[a, Nja(“'_,,
~ G {917 ~ ag{091i7

A~
then a**€ 'S(R)Y, a*CIM(R), We write a= a** 4 a¥,

~ o~ ~

Definition 3.4, Let a, bEFN(R),
AN

~
(1) a4+ biZ(a*+h*) 4 (a¥* 4 ph#*)y

~

(2> a<<h iff a*C* b* in FM(R) and a**<**b** in FS(R),

Theorem 3.3, <(FN(R), +,< is a square latticc,
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