Extension Frinciple and its Use in Fuzzy Optimization

Jaroslav Ramík

Iron and Steel Research Institute, Dobrá,739 51 Czechoslovakia

1. INTRODUCTION

The Extension principle introduced by L.A.Zadeh plays most important role in fuzzy set theory, see e.g. [1]. In the present paper we shall deal with two possibilities of generalization of this principle to set-to-set mappings. We present several relations between the two possibilities one of which turns out to be suitable for introducing the notion of optimal solution of a fuszy optimization problem.

2. PRELIMINARIES

In the paper [1], $\stackrel{\bullet}{\bullet}$ he Extension principle reads as follows: Let X, Y be sets, G be a point-to-point mapping from X to Y, i.e. G: $X \longrightarrow Y$, $\stackrel{\wedge}{\wedge}$ be a fuzzy set on X, i.e. $\stackrel{\wedge}{\wedge} \subseteq X$. The image of the of the fuzzy set $\stackrel{\wedge}{\wedge}$ by G is a fuzzy set $G(\stackrel{\wedge}{\wedge}) \subseteq Y$ such that

(1)
$$G(\underline{A})y = 0 \lor \bigvee_{\substack{y=G(x)\\ x \in X}} \underline{Ax},$$

where Ax means the value of the membership function of A, i.e. $Ax \in [0,1]$ and [0,1] is a unit interval in the real line R. By the symbol \bigvee we mean supremum (maximum), the set of all subsets of X is denoted by $\Re(X)$, the set of all fuzzy sets on X

is denoted by $\mathcal{Z}(X)$.

3. EXTENSION PRINCIPLE

We shall introduce two definitions of images of a fuzzy set in case of set-to-set mappings.

Definition 1. Let G be a set-to-set mapping, i.e. $G: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$, A being a fuzzy set on X, i.e. $A \subseteq X$. The image of the fuzzy set A by G be a fuzzy set $G_1(A) \subseteq Y$ defined by the following formula:

(2)
$$G_{1}(\underline{A})y = 0 \lor \bigvee \underline{A}x \\ y \in G(\{x\}) \\ x \in X$$

for all y & Y .

Definition 2. Let $G: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$, $A \subseteq X$. The image of the fuzzy set A by G be a fuzzy set $G_2(A) \subseteq Y$ defined by the following formula:

(3)
$$G_{2}(A)y = 0 \lor \bigvee \infty$$

$$y \in G(A)$$

$$\infty \in [0, 1]$$

for all $y \in Y$, $A_{\infty} = \{x \in X : A_{\infty} \ge \infty\}$ being the ∞ -level set of A.

Set

$$(4) \quad \mathcal{V}_{1}(X,Y) = \left\{G : \mathcal{G}(X) \longrightarrow \mathcal{P}(Y), U \subset V \subset X \Longrightarrow G(U) \subset G(V)\right\},$$

(5)
$$V_2(x, y) = \{G : G: \mathcal{P}(x) \rightarrow \mathcal{P}(y), U \in X \Rightarrow G(U) \in \bigcup_{x \in U} G(\{x\})\}.$$

Assertion 1. If $G \in \mathcal{V}_1$, $A \subseteq X$, then

$$G_{1}(\underline{A}) \lesssim G_{2}(\underline{A}) ,$$

if $G \in \mathscr{V}_2$, $\mathbb{A} \lesssim X$, then

$$(7) G_1(\underline{A}) \geq G_2(\underline{A}) .$$

Corollary. Let $G: X \longrightarrow Y$ be a point-to-point mapping. This mapping may be understood as a set-to-set mapping by a natural way setting

$$G(U) = \bigcup_{u \in U} \{G(u)\}$$
.

It is easy to see that $G \in \mathcal{V}_1 \cap \mathcal{V}_2$, consequently, by Assertion 1 for $A \subseteq X$ we have

(8)
$$G_1(A) = G_2(A)$$

where "=" means the identity relation between two fuzzy sets.

Remark. It could be shown by simple examples that the identity (8) does not hold in general.

Now, set

$$(9) \qquad \mathcal{V}_{3}(X) = \{G : G: \mathcal{P}(X) \longrightarrow \mathcal{P}(X), \emptyset \neq U \subset X \implies G(U) \subset U \},$$

$$(10) \quad \mathcal{Y}_{4}(X) = \{G : G : \mathcal{I}(X) \longrightarrow \mathcal{I}(X), \emptyset \neq U \subset V \subset X \Longrightarrow U \cap G(V) \subset G(U)\} .$$

Assertion 2. Let $G \in V_3(X)$ and for any $x \in X$ let $G(\{x\}) \neq \emptyset$, $A \subseteq X$. Then

$$(11) G_2(\underline{A}) \lesssim G_1(\underline{A}) = \underline{A} .$$

Assertion 3. Let $G \in V_3 \cap V_4$, $A \subseteq X$, then $G_2(A)y = Ay \text{ for } y \in \bigcup_{\alpha \in [0, 1]} G(A_{\alpha}),$ = 0 otherwise.

Moreover, the β -level set of the fuzzy set $G_2(A)$ satisfies the following equality:

(13)
$$(G_2(\underline{A}))_{\beta} = \bigcup_{\alpha \in [0, 1]} G(\underline{A}_{\alpha}) .$$

The proofs of Assertions 1 - 3 do not cause serious troubles, they are straightforward.

4. FUZZY OPTIMIZATION PROBLEM

A fuzzy optimization problem is understood as optimization (maximization or minimization) an objective function $g:X \longrightarrow R$ subject to a constraint fuzzy set $U \subseteq X$. We denote this problem as follows:

Immediately arises a question how the optimal solution of (14) should be understood in the above constraint fuzzy set U. To solve this task we define the following set-to-set mapping:

(15)
$$G^{O}(U) = \left\{x \in X ; x \in U, g(x) = \bigvee_{u \in U} g(u)\right\}.$$

We could easily demonstrate that $G^o \in V_3(X) \cap V_4(X)$, consequently, Assertions 2 and 3 may be applied.

Definition 3. The optimal solution of the fuzzy optimization problem (14) is a fuzzy set $G_2^{O}(\underline{U})$ defined by Definition 2 being applied to the mapping (15).

Remark. Defining the notion of optimal solution of the fuzzy optimization problem (14), we use Definition 2 and not Definition 1. The reason for doing so lies in in Assertion 2, since $G_1^O(U) \equiv U$. Assertion 3 demonstrates the structure of the optimal solution of (14).

Usually, the optimal solution of (14) is defined by the other way, see e.g. [2]. Let

(16)
$$g(X) = \{ \alpha \in \mathbb{R} : \alpha = g(x), x \in X \},$$

$$(17) \qquad \qquad U X = \{ \infty \in \mathbb{R} ; \quad \infty = U x , \quad x \in X \} ,$$

and set

$$S = \{(u,v) \in \mathbb{R}_2 : u \in g(X), v \in UX\}.$$

The couple $(u_0, v_0) \in S$ is said to be a maximal element of S, if $(u, v) \in S$, $u \ge u_0, v \ge v_0$ imply $u = u_0$, $v = v_0$.

The set of all maximal elements of S will be denoted by S_{max} .

<u>Definition 4.</u> By the optimal solution of the fuzzy optimization problem (14) is understood a fuzzy set

$$\int_{\mathbf{X}} \omega(\mathbf{x})/\mathbf{x} ,$$

where

(19)
$$\omega(x) = Ux \quad \text{for } (g(x), Ux) \in S_{\text{max}},$$

$$= 0 \quad \text{otherwise}.$$

The following assertion demonstrates conditions under which the optimal solution of the problem (14) according to Befinition 3 coincides with the optimal solution according to Definition 4.

(20) Considering the notation (16)-(19), it holds $\int_{\mathbb{T}} w(x)/x \lesssim G_2^0(y) .$

The opposite inclusion to (20), i.e.

$$(21) \qquad \int_{\mathbb{X}} \langle u(\mathbf{x})/\mathbf{x} \gtrsim G_2^{0}(\mathbf{y})$$

holds if and only if the following condition is valid:

(22) If $x,y \in G^{O}(U_{\infty})$ for some $0 < \infty \le 1$, then Ux = Uy.

Remark. If for every $0 < \infty \le 1$ g attains its maximum on U_{∞} in one point at the most, then the statement (22) is true.

Remark. The set-to-set mapping G^{O} defined by (15) is a special element of the system of mappings $\{G^{E}\}$, where $E \ge 0$, $G^{E}(U) = \{x \in X ; x \in U , g(x) \ge \bigvee_{u \in U} g(u) - E\}$.

The extension $G_2^{\xi}(U)$ could be taken as ξ -optimal solution of the fuzzy optimization problem (14).

REFERENCES

- [1] Zadeh, L.A.: "The Concept of a Linquistic Variable and its Application to Approximate Reasoning", Inf. Sci., 8, 1975
- [2] Negoita, C.V.: "Current Interest in Fuzzy Optimization", Fuzzy Sets and Systems, 6, 1981
- [3] Ramík, J.: "Extension Principle and Fuzzy Mathematical Programming". Kybernetika, 19, 1983