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Abstract

This note discusses a few issues related to Yager's specificity
inaex and the "possibilistic entropy'" recently introduced by Higashi and
KLir. A probabilistic interpretation of Yager's index is provided ; more-

cver it is indicated that both indices can be straightforwardly extended
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imorecision ; entropy.

Following Zadeh [7] the contents of a proposition of the form
'X is A', which restricts (in a fuzzy or a non-fuzzy way) the possible
values of a variable X on a universe of discourse S, is represented by
means of the membership function of the subset induced by the predicate A ;
this subset of S will be also denoted by A and its membership function by UA'

Thus the proposition 'X is A' is translated into
¥Ys€s5s, nx(s) = uA(s) 1

where Ty is the possibility distribution attached to the variable X.
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Fuzzy set inclusion, defined by,
AcCB&VYs €5, uA(s) < uB(s) (2)

is in agreement with the fact that the larger A, the less restrictive the
oroposition p = 'X is A' (short for "the true value of X is in A') 1is for

the possible values of X.

Yager [5]1, [6] introduced a so-called measure of specificity
which estimates how precise is the information 'X is A' rather that its
fuzziness (measured by the so-called entropy of the fuzzy set A, see [11).
A specificity measure Sp is such that, A and B being normalized fuzzy

sets {i.e. 3 s (51) =1, UB(SZ) =N

17 Sz Hp
{ i)Y ACcsS, spAd) € [0,1]

i1) Sp(A) = 1 < A is a singleton of S (3
-i1i) ¥ A € B > Sp(A) > Sp(B)

When S is finite, Yager has proposed the following expression for

cgefining the specificity

a
Sp(A) = [ ! d o (4)
JO ]Aul
where o = mgx Up(s), A = {s €5, Hp(s) 2 a} and || denotes the cardinality.

It can be easily checked that the expression defined by (4) satisfies the
requirements (3). A crisp set can be less specific (i.e. precise)than a
fuzzy set for restricting the possible values of a variable ; the maximum of

cpecificity corresponds to a precise assessment of the value of the variable.

A measure of specificity must not be confused with a measure of
tuzziness which estimates to what extent a subset has an ill-defined boun-
darv. A measure of fuzziness is zero for crisp subsets and is maximum for

the fuzzy set A defined by, ¥ s € S, uA(s) = %. See [1]1.
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In Dubois Prade [2]1, a one-to—-one correspondence between a pro-

bability distribution Py and a possibility distribution Ty is introduced

on tinite domains ; this transformation preserves the following inequali-

ries
S

¥ FeEe2, NX(F) < PX(F) < HX(F) (5)
where PX, HX and NX are the probability, possibility and necessity measures
based on p, and T, respectively (i.e. P, (F) = X p_(s) ;

X X X SEFX
T.0F) = max T,(s) ; Ny(F) = min (1 - 7w _(s)). The inegualities (5) are in
X X X X

s €F s/@F

agreement with the motto : what is probable must be possible and what is

recessary (i.e. ineluctable) must be probable.

The transformation is defined by

_ AR '
¥Ses, ﬂx(s) = /) m1n(px(s ), px(s)) (6)
s' €5
n
) Lo Vo1 -
and conversely ¥ i = 1,n, pX(Si) /) . (ﬂx(sj) ﬂx(sj+1)) 7
i =
where the n elements of S are supposed to be ordered according to the decrea-
¢ing values of Ty and ﬂx(sn+1) = 0 by convention. Note that

=1,n, pX(Si) > px(si+1) = ﬂX(Si) > HX(Si ) (8

+1

“.e. the transformation preserves the ordering among the elements of S.

Thus, a possibilistic interpretation can be provided for frequency

riistograms concurrently with the usual probabilistic interpretation.

The specificity of a normalized fuzzy set A, defined by (4) on a
finite domain S, is still equal to

uA(si) - UA(Si+1)

Sp(A) = (9

.i

n>~"1o
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where the n elements of S are ordered according to the decreasing values

of and uA(s = 0 ; thus, Sp(A) can be viewed as the probability of

Ha n+1)
the element which has the greatest membership degree, in the sense of the
rransformation defined by (6) and (7) ; in other words, Sp(A) is the pro-
bability, computed from Ty using (7), of the most possible value of X when

we interpret My @s My

A possibility measure [7] based on a possibility distribution

.
A
ee Shafer [41). A plausibility function PL is a set function which can

Ty from S to [0,11 is a particular case of plausibility functions
(s

ce defined from a so-called basic probability assignment m, such that

D m @ =0 ; i ;ﬂ mCF) = 1 10)
Fcs
Then,
Vecs, PLG = 51 NG 1)
GnF#D

By duality the belief function based on m is defined by
Bel (G) = 1 - PL(G) where G is the opposite event of G.

When the subsets F of S which are such that m(f) >0 (and which
are called "focal elements”) are nested,the plausibility function is a
pessibility measure and then we have the following relation between the
underlying possibility distribution and basic probability assignment (see
Lz
gmA<§sq, eee, sii) = Uy (s) — Wy (s. ), 0= 1,n

Lmg(F) = 0 AfF # §s,, .ae, 554

12

where the n elements of S are supposed to be ordered according to the

decreasing values of My 7 uA(sn ) = 0 by convention.

+1

Note that formula (7) can be extended to provide a probabilistic
approximation of any belief or plausibility function,under the form (see
Leh

Vs €5, pyls) = E: mCF) (13)
s.‘E F
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The specificity of A defined by (4) is still equal to

m
Sp(A) = y ?F (14)

[

FEs

Thus, (14) still makes sense for general plausibility functions and not only

far possibility measures.

Recently, Higashi and Klir [3] have introduced a possibilistic
measure of uncertainty U defined by
r1
UCa) = log, (1A 1)do (15)
J 2 1P
0
where A is a normalized fuzzy set of S. When S is finite, using (12), (15)

car be rewritten as

UCA) = mA(F) . Logz(}Fl) 16)

tn >~

The expression (16) shows that U(A) can be viewed as an Hartley
measure of information weighted by the basic probability assignment My
<ince Logz(!F!) is the Hartley entropy of the crisp set F, see [31. This
is coherent with the interpretation (provided by (12)) of a fuzzy set as

s weighted collection of nested crisp sets.

It is clear that (16) can be readily extended to a general plausi-

tility function defined by its basic probability assignment m, as

utm) = Z m(F) . log,C|F) “an
Fcs

Probability measures are particular cases of plausibility functions
whose focal elements reduce to singLeton§ see [4]1. Thus U(m) is always zero
‘r case of a probability measure since m(F) > 0 > |F| = 1. This remark and
the interpretation of U(m) as a weighted Hartley entropy, indicate that U(m)

estimates the imprecision of the focal elements and not at all to what extent
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these focal elements are conflicting ; the case of a probability measure
sorresponds to the maximum of precision of the focal elements and to the
maximum of conflict between them, since the focal elements are singletons
which do not overlap by nature ; in case of a possibility measure there
is no conflict since the focal elements are nested and only the impreci-
sion remains. Thus (16) or (17) clearly depart from Shannon entropy which,
in some sense, assesses the amount of conflict of the available evidence

regarding the values which some variable may take.

Indeed, it can be shown that U(A), defined by (16) satisfy the

foilowing requirements

i) UCA) € [0, + «)
i3) UCAY = 0 < A is singleton of S
i1i) A € B > U(A) < UB) (see [31)

Thus, f(UCA)) where is a strictly decreasing one-to-one mapping form [0, + =)
te [0,11, can be used as a specificity measure concurrently with Sp(A) defi-
ned by (4).

Lastly, we may think of computing the Shannon entropy of the proba-
tiiity distribution issued by .7) from a possibility distribution. However, the
measure of uncertainty which is thus attached to a possibility distribution

¢ not monotonic with respect to the possibility distribution (i.e. fuzzy
cet) inclusion defined by (2), as it can be checked on counter-examples. Thus
th+s approach cannot give birth to a measure of specificity in the sense of

T

[
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