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EXTENSION OF FUZZY P-MEASURE

Krzysztof PIASECKI
Department of Mathematics, Academy of Economy,
ul. Marchlewskiego 146/150, 60-967 Poznain, Poland

fhe theorem about extension of probability measure of fuzzy events
is given here. This extension bases on the notion of outer measure.
Presented results are gemeralization of analogous results (see 28D
for crisp case. Further some new properties of fuzzy P-measure are

proved.
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1. Introduction

In [6] probability of fuzzy events, fuzzy P-measure say, is defie
ned as d:numerable additivity measure, Its definition and some proper=-
tieg we can find in part 2. Proposed approach bases on the weak no-
tions [4,7] presented in next part, too. Employment of weak notions
repairs. fundamental differences between fuzzy and‘criap theories of
probability. Therefore, the notion of fuzzy P-measure should simplify
a considerations about fuzzy events.

This paper contains the next results obtained for fugzy P-measure.
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?. Preliminary notions

Let be given the crisp set £2 and the family of fuzzy subsets
§=-{m: Q—[0,1]} closed under complement and union. The next parts

of this paper are based on the following notions and facts.

Definition 2.1: Bach fuzzy subset e ® fulfilling the property

ME1-m is called a W-empty set. [5)

Definition 2.2: Each fuzzy subset mée @ fulfilling the property
MYy i=pm is called a Weuniversum. [5]

Definition 2.,3%3: Each fuzzy subset (,u.,v)e@z such that MLl=V
are called a W=geparated sets. [5]

Theorem 2.1: Any fuzzy subset ued is a Weempty set iff there

exists ved such that m=va(1=v). [5]

Theorem 2.2: Any fuzzy subset ued is a Weuniversum £ff there
exists wved such that u=vv(i-=v).[5]

Definition 2.4: If finite or infinite sequence of fuzzy subsets {wv }
fulfills the next properties:

(R1)  fuzzy subsets w, are pairwise W-geparated;

(R2) the fuzzy subset ma(l-sup{v }) is W-empty set;

(R3) sup tv s .

for fixed fuzzy subset then it is called a repartition of

M. 1]
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Theorem 2.3: If the sequence. {a } fulfills the conditions (R2) and
(R3) for the fuzzy subset gy  then the sequence {9n§ defined by

identity
M n=1
\Jnm ! { S) (2.1)
. Al -max n>1
n k<n ”k

is a repartition of um . [7]

Definition 2,.%: Each family of mappings &= {,u: Q.—-)L'O,f_]} fulfile

ling the next conditions

Oned :
A
V§ 1—Meg ’
ME
M VYV E
v
(,u,v)&gz

ig called a fuzzy algebra. [3]

Definition 2.6: Each fuzzy algebra &  fulfilling additionally the
condition

sup {m €6
{unieG'N n B

is called a fuzzy G-algebra. [:3]

Definition 2.7: If fuzzy algebra (G-algebra) does not contain the fu-
zzy subset [ % ].Q.: Q..——>{%} then it is called soft fuzzy algebra

(G -algebra). [6,7]

Definition 2.8: Let be given the soft fuzzy G-algebra G . Each map-
ping p: @—>R¥u {0} having the following properties:
(r1) for all fuzzy subsets ue€

F’(}"“(1'M))=1 ’
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(P2) if finite or infinite sequence  {m Ye®"  fulfills (R1) then

in}) = )
p(sgp Mpt) %}p(;&n

is called a fuzzy P-measure on G . [6]

Theorem Z.4: Let be given the soft fuzzy G-algebra 6 ., If a mapping
p: € —R", {0} is a fuzzy P-measure then it fulfills the next condi-
tions:
(P3) For all pairs of W-separated fuzzy subsets (u,v)e€ 3'2 we hawe
p(muv)=p(m) +p(v) .,
(P4) For all fuzzy subsets ue6 we have
pun(l=wl=0,
(P5) r(lg) =1«
P6; p(0Q) =0 .
(P7) For all fuzzy subsets ueS  we have
p(1=p)=1=pn) .
(P8) The mapping p is a nondecreasing funetion.
(P9) The mapping p transforms the family & into [0,1].

2

(¥10) For all pairs of fuzzy subsets (M,V) e G we have

pamrv)+ p(mav)=p(m) +p(v)

(P11) PFor all pairs of fuzzy subsets (w,vV)ed 2

such that ww<v
we have:
p(wAa(1=m))=0=p(m) =p(v) |
(P12) If the sequence {v,! is a repartition of wmeG  then we
have
pw3=§’, p(v) <
(P13) For each sequence: of fuzzy subsets { ;A.n} eG K we have

L L
D (sgp {mg}) & Fﬂ_'} P (M)
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(P14) let be given any fuzzy subset v&6 we have plmvv)=p(m)
for all fuzzy subsets med iff p(v)=0 .

(P15) Let be given any fuzzy subset veé& , We have p(mav)=pw)
for all fuzzy subsets  me6 iff p(v)=1 .

(P16) For each nondecreasging sequence of fuzzy subsets {Mn_}TM
we have {p ().Ln_)}T p(m) o |

(P17) For each nonincreasing sequence of fuzzy subsets {MnNMr

we have {p (,u.n)} p(m)

Proof: All above thesis without (P12) and (P13) are proved in [4] or
(6] . o

1f the sequence {un_} is a repartition of au  then by (P11)
and (P2) we obtain

p(a) = = .
p(m)=p (sxrip v, 1) %j P (v))

For any sequence {Mn} the sequence {vn} defined by (2.1) is
a repartition of sup{ptn'l . So, from the conditions (P12) and (P8)

n
we have

5 im3) = (v) ¢ ., |
(sup fae, ;p Yn %]p(»n)

2. Outer measure

let be given the crisp set XL and the soft fuzzy algebra &=
= {m:.Q —>[0,1]) . The fuzzy G=-algebra F(£L2) is a family of all
fuzzy subsets of «L . Obviously we have & e F(LL) . Cover of fuzzy
subset L is defined as the set C(M—)z[{/.-tn}l m € sup { VneN:
A_negi for each meF(L2), i

#urthermore, the mapping P G —9[0,,1:[ is a fuzzy P-measure dee

~
fined on G . Let us consider the next notione.
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Definition 3.1: The mapping p*: F(Q)—>R defined for each aeP()

a8 follows

% = f e
¥ () Ci(nM{%]p(pn)} ‘ (3.1)

”
1s called a outer measure induced by measure ) on G .

Theorem 3.1: The outer measure p* induced by the measure p is

a extemsion of p i.e. for all /.Leé\‘ we have p*(u)=p(um) .

~
Proof: If meB  then ém vsup {0q) and therefore
n

p¥ () £ p(m) + 30 pl0Q)=p(r) .
n

On the other hand if )ue'§ ’ Mne—g’ for all neN and M &
<sup iy, then, by (P8) and (P13).
n

p(m) & %: p (/“'n) )

so that p(m) & p*(m) . This proves that p* is indeed a extension

From the above: thesis we get immediately,

Lemma 3.1: Any outer measure induced by fuzzy P-measure satisfies the

conditions (P5) and (P6) for all fuzzy subsets.

Lemma 3.2: Any outer measure induced by fuzzy P-measure fulfills the

conditions (P8), (P9), (P16) and (P17) for all fuzzy subsets.

Froof: If jeF(S8L) , VvVeF(LL) , u4w and fv jecC(») then
{v leC(m) and therefore p*(m) &p*(v) .
The condition (P9) follows from (P8) and the Lemma 3.1.
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If {vn} is a nondecreasing sequence of fuzzy subsets, then

supjp } and sup {p™wv, )} exist and we have

n

sup ip*<vk33”8up“nui {2 pupi} = {c( )}in(» )3 =

= i *
(sgpniivk}) {Z P)i=e (sup togd) -

[ts proves (P16). By analogous way, as above, we obtain (P17). m®

Lemma 3.3%: Any outer measure induced by fuzzy P-measure satisfies the

condition (P13) for all fuzzy subsets.

Proof: let us suppose that um and Mo (neN) are fuzzy subsets
from (L) such that  u ¢sup] M.} o let € be arbitrary po=-
n

sitive number, and choose, for each neN , a sequence {mn,nle Cla,)

guch that

zm3 P (/&n’m) & P*(‘un) "'2% .

The possibility of such a choise follows from the definition 3.1. Then,

since fuzzy subsets Mn,m form a sequence from C(mu) and

PR & %} DI TV 4%} ) tE .

The arbitrariness of ¢ implies that

) & 23 P) v .
n

4., Measurable fuzzy subsets.

Tet p* Dbe an outer measure induced Wy fuzzy P-measure on the

fuzzy Gealgebra F(LL) .
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Definition 4.1: A fuzzy subset MEF(L) is p®-measurable if, for
avery VvePF(L)

p*() =p¥oaun)+pT(va(1=pm)) .

4 concept of this notion follows from analogous definition formula-
ted for classical theory of denumerable additive measure by Carathe o=
dory [1] . The class of all p*-measurable fuzzy subsets we will be in-

dicate by symbol 3 . For this class we have.

Lemma 4.1: The class S contains the fuzzy subset Og, .

Proof: For each veF(S2) we get
p*(wa0gq,) + p*(va(1 = BQ))=1"(0q) +p* (v A Ig)=p*(v)
so 0n€S .m

Lemma 4.2: The class S is closed under complement.
vroof: If wme&3  then, for each Vv&F(Q) , we have
p*(0) = p* (VA )+ pM VA (1 e )= p¥oa(te (1=au)))+ (A (1ewn)).

This proves that 1-uel , too. ®

Lemma 4.3: Any outer measure p* satisfies (P4) for every p¥-measu-

rable fuzzy subsets.
Proof: If Me€3 then we obtain
p*(m)=p*(map)+ pM (A (1 = )) = p() + p*(en (1= 1))

‘t implies that p*(ua(lep))=0 .=

Lemma 4.43 The class S is closed under union.
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Proof: If s, and M, are in 8 and weF(&) , then
n*(v) =‘P*(\JAM1) +p*(va (i "/‘*‘1)) | (1)
GRS W CIVIRY VRS U CRV AN CEY ) (i1)
p¥wn (1 -;&1)) =p*(v A (1) A Mo ) +p*(v A (1 -)u1)n (1 =p5) (iit)
Substituting (ii) and (iii) into (i) we obtain
ax(v) = p"‘(va,u._’ A ,u.z) +pX¥(va Mg (1 -#2))+p*(vn 1 -;;1) A,uz) +
+p*(>n (1=u) a1 -pz)) (iv)
If in equation (iv) we replace v by V almgvp,) , the first
three terms of the right hand side remain unaltered and the last term
irors out because from the conditions (P4), (P8) and (P9) we get
D&V A (L) A (e ps)n (g v 115)) & P¥((1 = (uy V/uz))h (agvpmy)) =0
e have
pr(vn(u.lv Mz)) = p*(\u\;.a.‘ Mua)-o- p*(v A Mg A (1,../,‘2 )) +
+p*(von (1 -/4.1;) A pz) . (4».1)
since (1=pm)d A (Qapm)=1a (#yviry) , substituding (4.1) into (iv)
yields '
p*(v) = p*(v A (my v mp)) + p¥(o A (1= (uy v 1, ))

which proves that m,vu,€35 ,m

Lemma 4.5: Any outer measure p¥* fulfila (P1) and (P7) for every

n*=~measurable fuzzy subsets.

»roof: If meS then we have

1=p*(lg) =p*(Iqrm) + P*(Ig » (1= w))=p™u) +p*(1~-u) .
further, uv(@=-m)e§ and

pa v (T N=p*(I (e n (=N =1=p¥(ur(1 = )N=1 . m



35

emma 4,6: The class B does not contain the fuzzy subset “}]& .

Proof: let us suppose that [%ﬂae-g o« Thiz subset is both W-empty

set and We-universum., On the other side the class 3§ is closed under
union. Therefore, from the Theorems 2.1 and 2.2 together with the conw

ditions (P1) and (P4) we get

RARE

3o, nur assumption is false., @
8y the Lemmas 4.1, 4.2, 4.4 and 4.6 we obtain the next conclusion.
Theorem 4.1: The class S is a soft fuzzy algebra.

lemna 4.7¢ If {p.n} is any sequence of p¥-measurable fuzzy subsets
then

p*(v) = p (v (sup a3 v(‘l-sup{p.n}))) : (4.2)
n n

for every vefF(SL) .

Proof: Bach fuzzy subset <, defined as follows

'\P =maX{}L (4«:3)
n o xen n :

is p¥-measurable. Therefore we have

p*¥(V) = p*¥(vap)) + p¥(0n (1 =) (1)
for every veF(L2) . Replacing v by Valy, v (1- *Vn)) in
{i) we obtain

p*(v) Y p*(v A (SEP {Mk} v(t- ‘\Pn))) > p(va (\fnu (1= '\yn))) =

3 ‘p*(\i N ('\"n v (1 bl '\')n))’\ "rn) + p)k(D N (ﬂ?n v (1 = '\Pn)) " (1- '\Pn)) =

" p*(\) A \Pn) + p*(\) A (1 - '\}’n)) = p*(\))
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o1 each positive integer n . Therefore, by (P17) we obtain

p*(¥) = 1im p*(¥ A (8up {Mk§ v(l=- '\Vn)))s
n—>»e k

=p¥(va (s;:c),p {,uk} A (1 - Sup {,u.n} N ..
v n

Lemma 4.8: If {Mn} is a sequence of pairwise W-separated fuzzy

subsets in 5  then the fuzzy subset sup fa } is p¥-measurable
n

and we have

o*(va sup {p«n'ﬁ) =2 p*(un,un) (4+4)
n n

cor every VEF() .

Proof: By the identity (4.1) we obtain
p¥(v a ey v,uz)) = p*(» n gy )+ p¥> n,,cz)

for W-separated fuzzy subsets Moy and Mo from 3 Dbecause
0£pM(va g Ap)) 4Py n (1= ))=0

it follows by mathematical induetion that
p*(» ~ ) =é p*(vap, )

where Yo is p*~measurable fuzzy subsets defined by (4.3). We have

p*(p) = p¥(v A ) + PV A (1= )2
X1
) , *(\)A/u' ) *(\J (1 - .
§ D i) + P72~ (1= sup fpun 1))

3ince this is true for every n , by (P13) and the Lemma 4.7 we get

p*(» A (sup fu, v (T =sup fu 1)))= p*(v)>
n n
);} p¥oaum )+ P A (1= sup 30>
2p*(vasup fu y) + P(v A (1-sup fa 10>
n n
2p* (v n (sup fpp } v (- sup fp30))

it follows the identity (4.4) and sup{,u.ns €S .B
n.
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wemma 4.93 If {,u-n} is a nondecreasing sequence of p*-measurable

‘uzzy subsets then the fuzzy subset supim }  is p*-measurable.
n

iroots If the sequence { pn’; satigfies the assumptions of proved

Lemma, then the seguence {vn’s defined by identity

{#1 n=1
A W
n

poA = ) n>

satisfies the assumptions of the Lemma 4.8, Therefore we have

n¥(W) = p¥(va a:p tv 1)+ p*(va (1= sgp {v, 1)) (i)
and, by (4.4) we get

p* (v  ax v, }) =p"vaumy)+ g p¥(vam, All= 1)) =

n
= p*(vau )+ %;; (p*(vam )=pXv a M) =P*(\M/“n)

ror every  vVeF(S2) and for n>1 .,
This along with (P16) implies that

w*(uAsup {,un's) lim p*(vn)u) lim p™vA max {vk§)=
n—>oo n—»00 k<n

= p™v A sup { max {\Sk”) P*(DASup{v 1) .
n k¢n

Substituting the last result into (i), by means of (4.2) we obtain

S* (v a(sup “*n.i v{({(1=- sgp {%3)))-.-. p¥(v) = p*(v A sup {vn}) +
n n
s (v (1=sup (v 1)) Yp*wasup {ag}) +p* (VA (1 =sup fu 1)) >
n n n
%( 4 ] v 1 - 3 )) .
v (s;lzp {mnd ( SEP {Mn} )

it proves that sup{m }é€ S.m
n

Theorem 4.2¢ The class 8 is a soft fuzzy Gealgebra.
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rrools Let an} is any sequence of p*-measurable tuzzy subsets.

ihen the sequence {'\Pn} , defined bj (#3), satisfies the assump=-
tions of the Lemma 4.9 Theretore sup{m )= sup {wn'ieg .+ ''h1s
n n

along with the Theorem 4,1 puts on end to proof of the Theorem 4¢2¢M
Theorem 4+3: The outer measure p* is a fuzzy P-measure on T .

froof: The condition (P2) follows from the identity (4¢4) for v= Ty
The Lemma 4.5 says that outer measure satisfies (P1) for all p*-mea-

surapble subsets, the proof of the theorems is complete. @

Let us designate by S(8)  the smallest soft fuzzy G-algebra

containing 5 e« The family S(G) will be called generated by

b
5 .+ We have:
Theorem 444: BEvery fuzzy subset in S(é) is p*~measurable.

sroofs I ,ueé' , veF(Q) , and € >0 , then, by the Defini-

tion 3.1, there exists a sequence {m }e C(v) , such that
M4 £330l = 20 (P (uyam) + D (my A (1-ID 2
n n

(v r )+ pMva(l = )) .
“urthermore, there exists a sequence (v e c(v) , such that

fv_ AaumdeCamw),y, o a1 -wd)feC(®a(l = n)) and

v a )+ pF(va (1 =) +e 220D (vpap)+ 27D (v, A (1 =-m))=
n n

=25 (v 2 p*(v) .
sipee bLhls is true for every ¢ o, I% follows that au is p¥-mea-

suranies It follows from the fact that &  is a soft fuzzy G=al-
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"
saebes Hhat 5 (5) < . »

s ihe main theorem.
N
'apn we always extend a fuzzy P-measure on G to the generated

Lo
sofi, fuzzy G-algebra S(G) . The answer to this question follows
rrom the results of foregoing sections, it is formally summarized in

hereafter presented theorem about uniqueness of extension.

PN
Theorem 5e1: If P is a fuzzy P-measure on @ , then the outer
measure p* , defined by(3e1),1s unique extension of p %o
5(8) , which is a fuzzy P-measure.

ircoi't The extense of presented above extension i1s proved in parts

“ans e
P, prove uniquenees, suppose that P4 and Ps are two fuz=
zy P-measure on S which are extensions of p on & , and
ned , for which

jat G be the class of all fuzzy subsets
?"1 (M) = pa (/u') = p*(M) A
« Furthermore, by the conditions (P7)

A
Jbviously we have ocl
is a monotone class closed under com=

and (P16) we obtain that M
siemente
Let us defipne a class K(v) as a family of all fuzzy subsets
4  such that wvveM o We have: umeK(v) iff veK(m) .
“urther, each class K(v) 1is a monotone slass, because M 1is
. wonotone classe
s, it follows from the fact that if

pa ~
1t ve6  then 6 < K(v)
any tuzzy subset M€l then w wvwve Sell .
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it wveM , then the values pi(Mv\J) and pi(\)) are gi=-
ven explicitly for every meK(¥) and for i =1 or 1 =2 .
Taen by the conditions (P1), (P3), (P4), (P8), (P14) and (P15) we
gel

;z*(Mv\)) = pl(}AV \-}3 = pl(Mv\)) A(V v(’l - \)))):

i

pi (v A (e vv)all =N = pj(va(pmra(d “VNv(va(l-v)v
vi(va(l -9 = pi(vv(ma(n - v)) = pi(v) + py(mn(l - v)) =
p*()+ py(ma(t =v)) .

i

we see that  mall -=w)eM o It along with the de Morgan Law pro-
ves that the class K(v) is closed under complement for every
VEL .

[f we take into account all above results then we get MeK (V)
for sach ve"g’ « This proves that /u.eK(v) for all pairs
(,u.,v‘)e >& o Therefore §cK(\>) for every velM o, Finally
we obtain MeK(m) for all meM o It implies ueK(v) for
any pailr (,u,v) GM2 o« We have proved that the family M 1is a
Tuzzy algebrae. -

Let {pn} be any sequence of fuzzy subsets in M o The last
conclusion implies that the sequence  {~ } , defined by (4.3),
ve.ongs to MN . Since M is a monotony class, it follows that

sup fm, ) = sup {y,}eM o So, the family M is a fuzzy G&-algeb-
n n

A
5e Therefore S(8)clH .m
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