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ABSTRACT

The generalized modus ponens is a fuzzy logic pattern of reasoning
that permits to deduce an imprecise conclusion from imprecise premises. Unfor-
tunately its computation can be unacceptably slow if one simply relies on a
direct Implementation of the definition formula. This short paper presents
an algorithm for performing an efficient deduction by means of a special case
ot the generalized modus ponens (i.e. based on the Brouwer-Godel implication).
“he exhibited method is of particular interest for application in expert system

technology.

- INTRODUCTION

In the course of the extensive research that is done on knowledge pro-
cecsing in artificial intelligence, a specific problem concerns the ways of
representing and treating imperfect informations. Among the most pertinent
works that have arisen in response let us mention those
- in the field of non-monotonic logics [1] that deal with what might be called

"'nference from incomplete or insufficient evidence',

developed in the frameworks of the MYCIN [9] and PROSPECTOR [3] expert systems

tor propagating uncertainty through reasoning chains,

'+ The author is partially supported by a grant of the Société Nationale
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- pertaining to fuzzy logic [111, [12] which takes its ground in the possibility
rheory [101, [2]1 and encompasses treatment of both imprecision and uncertainty

‘that can be of several types e.g. probabilistic or possibilistic).

In fuzzy logic (or equivalently approximate reasoning [81) a feature
¢t particular importance to expert systems [5]1 [6] is the ability to draw an
“morecise conclusion from a set of imprecise premises and a set of imprecise
“3¢rs matched against them. The main pattern of reasoning to perform such a de-
durtion is known as the generalized modus ponens that was introduced by Zadeh
[111. Actually several versions of the generalized modus ponens exist [7], each
be:ng defined with respect to a multivalued logic implication and a t-norm. As
*ar as computation is concerned, the application of the generalized modus ponens

vasically equivalent to the solution of a non-linear program [12]. Unfortu-
nately, a naive implementation relying directly on the formula of the definition
mav render 1t time-inefficient and even obsolete for inferences involving more
fnar two premises. Indeed, generally in order to achieve a satisfactory level
of validity for an inferred conclusion such an implementation would reguire to
go through a thin discretisation of the cartesian product of possibility distri-
burions involved in the premises and would therefore lead to numerous expensive

terations.

This short paper presents an algorithm for performing a fast genera-
:red modus ponens defined with respect to the Brouwer—-Gédel multivalued logic
impiication and the t-norm 'min'. The efficiency exhibited by this method stems
‘rom the fact that it does not reguire any discretisation of the possibility
distributions involved in the premises. In addition this method produces an
optimally valid conclusion since it is not subject to the thinness of a discre-

sation.
The next section provides some background on the generalized modus

pvonens and introduces the notation and hypotheses. The algorithm is presented in

section I11.

Stated in the form of a syllogism the generalized modus ponens Llooks



[

If X 1s A then Y is C
X 1s A’ (1
Y is C!

Basically this means that from a rule which associates a variable X specified

by an elastic (or fuzzy) constraint A with a variable Y specified by an elastic
constraint C and a fact "X is A'"" expressing the value (eventually imprecise)

ct X one can infer the fact "Y is C'" where C' is the deduced elastic constraint
en Y. X and Y are supposed to take their values in U and V respectively. The
constraints A, C, A" and C' are respectively expressed by the possibitity distri-
butions UA’ uc, UA' and UC' that represent the possible values which X and Y may
take rn the rule and in the facts. The possibility distribution Heo is computed
trom both Y and a conditional possibility distributions u, consistent with a
multivalued logic implication derived from UA and uc. In this paper UC' is assu-
med to be given by

vz, uc,(v) = sup min(u,, (w, u»(u, v)) 2>

u€u A

T 9f uA(u> < uc(v)
wnere Lﬁ(u, v) =

uc(v) otherwise
L 13 consistent with the Brouwer-Goédel implication. See [7J[8] for other pos-
sibilities than (2) (they are obtained by making use of other multivalued logic
impiications and other t-norms than 'min'). One of the most interesting feature
of (23 is that when A' is the same constraint than A (or more generally when

Tuou, uA,(u) < uA(u)) then the deduced constraint C' is exactly C (i.e.

Fov v, b, ()

cr uc(v)).

The rule involved in the modus ponens may be multidimentional. In
effect, the varijable X may actually stand for a finite collection of n variables
X li,e. X = Xq, cen, Xn)) that are assumed here to be non-interactive [10].
Each ¥x. can be regarded as the implicit or explicit constrained variable of the
ivh premise ”Xi is Ai” involved in the rule. For i =1, ..., n the constraint

A 1z expressed by the possibility distribution UA on Ui' Under the assumption
7'

c® ror=interactivity the possibility distribution My and My, are computed as
follows

u (u) = min u, (u.) (3
A 1<i<n Ry
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uA,(u) = min u,, (u.) (4) in which u :(u1, cee, un)
1<i<n T ]

I~ the sequel the possibility distributions pA , 1 =1, «vv, n and pc are
_‘I

asiumed to be unimodal, normalized and represented by four place parameterized

turctions symbolically written (ai bi ai

pa2-tively. The meaning of the four parameters 1is shown in picture 1 in the

Bi)’ i=1, ..., nand (c e Y €) res-

<imple (but not restricted to) case of a trapezoidal distribution (a b a R).

a- o b bip

Picture 1

For brevity and clarity of the exposure, any distribution

¢ ... 1 =1, ..., n is assumed to be continuous and represented by (a; b; a; B%).

A e
However the extention to discrete normalized distributions (necessary in case

¢t chaining) does not present any theoretical problem.

10 - Algorithm

The algorithm starts with an evaluation of the global level of inde-
termination that appears in the conclusion as soon as a significant part of “A'
f3: .5 outside of My (UA, and UA being considered as the fuzzy sets they are
membership of) i.e. 3 u € U such that UA,(u) > UA(u). It is easy to see on for-
muata (2) that this global Llevel of indetermination is given by

sup utw 5)
ut{uceE U1 X wun X Un / UA(u) = 0}

Tnen, three different treatments have to be considered depending on the result
ontrained for . The second and third treatments encompass both two different
srtuations. For clarity the more complex situations are illustrated by pictures

carresponding to single-premise rules.
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<:::} Computation of the global level of indetermination.
max L. where ¥ i € {1, ..., n} C. is obtained by
1< 1<n

- 3 t -
jmax(uA%(ai ai), UA%(bi + Ri)) if a; < bi + Ri and bi > a, o

{1 otherwise.

@IfC=1thenuC,(v):1 WvEV

This is the case of complete indetermination.

If £ = 0 let us define for any i € {1, ..., n} the set I. by :
fus € ]ai - a., aiE U ]bi’ bi + Bi[ such that UAi(ui) = UA;(ui)
(this intersection has to be considered exclusively on the parts where

*
Ha and My, are both increasing of both decreasing without being merged )}.
i i

sty ie {1, L., nt I, =0 then u,(v) = (W ¥vEWV.

* %k
byof 349 € {1, ..., n} such that L # 0 let us define 2 and one by :
Q= mjn min p%‘(ui)
1<i<n u. € I. i
1.70 '
1
one = min min(, @}) , u, (biN
1<i<n Ay Ay

T e e ) = uc) Yy < i bz and ¥ v 2 sup uo ! (@
where uE1(Q) ={vev/ uc(v) = Q}

< u., w)

c 1Y v € Jinf ug1(one), sup uE1(one)E

. uc,(v) = max sup (u.)
i

Hat
-1 1
<

1<i<n u, € uAi(uC(v))

Y v € Jinf ug1(9), inf u;1(one)] U Lsup ug1(one), sup uE1(Q)[.

Picture 2 illustrates, in an approximate manner, the situation 2b

- This means, in particular, that if Mar = My then Ii = 0.
i i
=+ More generally, 'one' is defined by : one = inf UA(u)

u € {u/ UN(u) =1}
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Picture 2.

If ¢ € 10,1C then two situations have to be considered :
Y ie {1, ..., n} a, <al <bl <b. then let us define :

- for any i € {1, ..., n} the set I. as in treatment 2 (i.e. for ¢ =0

-3 by 8= max max “A (ui)
1<i<n u, € I i
Iﬁ 0

Then . uc,(v) =g VYv<c-y and Yv>e+e

. -1 -1
. uc,(v) = uc(v) Y v € Jinf He (), sup He (DL
. pC,(v) = max sup uA!(ui)

. -1,]
<
1<ign u; € “Ai(“c(V))
Y v € Jc - v, inf uE1(Q)] UL sup qu(Q), e + el.

The situation 3a is roughly sketched in picture 3.

\ ("A’

Picture 3.

if 33 € {1,...,n} such that a% <a; or b; > bi then let us define'one' by :

one = min min(u, @', u, (b)),
1<i<n Ay 17 TR
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Then 1. uc,(v) =z VYv<c-yandYv>e+c¢

1]

.ouL ()

o 17 ¥V v € Jinf uE1(one), sup u;1(one)E

. uc,(v) = max sup UA!(ui)

: -1 !
1<i<n us € uAi(uC(v))

YveTc-rvy, inf uE1(one)] U Csup uE1(one), e + ¢cl.

“he sijtuation 3b 1is roughly sketched in picture 4.

v - Concluding_remarks

This short paper has described an efficient algorithm for perfor-

ming a generalized modus ponens based on Brouwer-Gédel implication. This method
frastically improves the performance of the naive implementation and therefore
permits to retain the generalized modus ponens its potentiality for serving as the
hasic pattern of reasoning with imprec?gggéggsconcLusions. It has actually been
deseloped for use in the inference engine ELFIN [4] that is designed for a

tass of petroleum geology expert systems. Among directions the current work

can be extended in are the similar investigations based on other t-norms and

other multivalued logic implications.
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