Fuzzy-set spaces with Hausdorff's metric: Completeness, separability, embedding

V. N. Bobylev

Computing Center of the Academy of Sciences
Moscow 117333, Soviet Union

Preliminaries

Let n be a positive integer. Denote by R^n the n-dimentional vector space with Euclidean inner product $\langle \cdot, \cdot \rangle$ and Euclidean norm $|\cdot|$. Let $\mathbf{x} \in R^n$ and $\mathbf{y} \in [0, \infty)$. Denote by Q^n the subset of R^n consisting of all vectors with rational coordinates. Let $i, j = 1, 2, \dots$.

Denote by $\mathcal U$ the set of all functions $\mathcal U:\mathbb R^n\to [0,1]$. The elements of $\mathcal U$ are known as characteristic functions of fuzzy subsets of $\mathbb R^n$. An addition +, a multiplication by $\mathcal X$ and an order \le on the set $\mathcal U$ are defined as usual [1], by generalizing the Minkowski operations and the by-inclusion order for ordinary sets. Let also $\mathcal G$ denote the characteristic function of the closed unit ball $\mathcal S^*$ (about the origin) in the space $\mathbb R^n$. Let $\mathcal V\in \mathcal U$ and $\mathbf x^*\in \mathcal S^*$.

1. Space of closed fuzzy sets

Consider a function that belongs to $\mathbb V$, takes the value 1 at least once, has the bounded support and is upper semicontinuous. Denote by $\mathbb Z$ the set of all such functions. A fuzzy set whose characteristic function belongs to $\mathbb Z$ will be referred to as non-empty bounded closed. Let $\mathcal M$, $\mathcal M$: $\in \mathbb Z$.

The number $g(\mu_1, \mu_2)$ will be called the <u>Hausdorff distance</u> between fuzzy sets with characteristic functions μ_1 and μ_2 .

The function g will be called the <u>Hausdorff metric</u> on the set \mathcal{X} .

Proposition. The Hausdorff distance between any two fuzzy sets with characteristic functions from \angle is equal to the supremum of ordinary Hausdorff's distances [2] between their same-level cuts, where the supremum is taken over the set ((), 1] of levels. The proof is immediate.

Theorem. $(\mathcal{L}, \mathcal{S})$ is a complete non-separable metric space; the algebraic operations and the order on the set \mathcal{L} being coordinated with the metric \mathcal{S} . In particular, the limit \mathcal{L} of any fundamental sequence $\{\mathcal{L}_{\mathcal{L}}\}$ has the form

$$\mu = \inf_{i} \text{elsup}_{i+j}$$
, where $\text{elv} = \inf\{\mu : \nu \leq \mu\}$.

The proof is immediate but not too short.

2. Space of closed convex fuzzy sets

Consider a function that belongs to \mathbb{X} and is quasiconcave. Denote by $\mathbb{X} \mathbb O$ the set of all such functions. A fuzzy set whose characteristic function belongs to $\mathbb{X} \mathbb O$ will be referred to as non-empty bounded closed convex. Consider also a function $\phi: \mathbb{X}^* \!\!\to\! \mathbb{R}^1$, for which

$$|\psi(x^*)| \leq \text{const} |x^*|$$
,

where const depends on ψ (but doesn't on x^*). Denote by $\mathcal F$ the set of all such functions. As usual, equip the $\mathcal F$ with the pointwise addition, multiplication by scalars, order and the norm

$$\|\varphi\| = \sup \{ |\varphi(x^*)| / |x^*| : x^* \neq 0 \}.$$

Theorem. (20,5) is a complete non-separable metric space. It can be isometrically embedded in the space \mathcal{F} , the algebraic operations and the order being also preserved, by the formula $\mathcal{M} \to \mathcal{V} = \mathcal{M}^*$, where

$$\mu^*(x^*) = \max \left\{ \langle x, x^* \rangle : \mu(x) \ge |x^*| \right\}.$$

The proof is immediate (except for, perhaps, the completeness; in the case of confusion see Item 5). The function generalizes the notion of an ordinary-set support function [3].

3. Space of closed crisp sets

Consider a function that belongs to Z and takes only two values: O and 1. Denote by ZR the set of all such functions. A fuzzy set whose characteristic function belongs to ZR will be referred to as non-empty bounded closed erisp.

Theorem. $(\mathcal{XR}, \mathcal{F})$ is a complete metric space. For the set of all finite subsets of Q^n , the set of their characteristic functions is countable and dense in $(\mathcal{XR}, \mathcal{F})$.

In fact, metric properties of the space $\mathcal{Z}\mathcal{X}$ are well known [2].

4. Space of balls

Consider a function of the form $\chi \delta$, for some χ . Denote by $\mathcal E$ the set of all such functions. The support of function $\chi \delta$ is called the ball of radius χ about the origin in the space R^n .

Theorem. $({}^{c}, {}^{c}, {}^{c})$ is isometric to $[0, \infty)$; the algebraic operations and the order being also preserved.

The proof is obvious.

5. Regular fuzzy-set spaces

A subspace $\mathbb V$ of $\mathbb V$ will be called regular if it is closed relative to the inf-operation and contains δ . For example, the spaces $\mathbb Z$, $\mathbb Z \emptyset$, $\mathbb Z \mathbb Z$, are regular.

Theorem. Let a subspace $\mathbb V$ of $\mathbb V$ be regular and be contained in $\mathbb Z$. Then the space $(\mathbb V,\mathbb F)$ is complete.

The proof is based on properties of the projector

ev
$$\mu = \inf \{ v \in V : \mu \leq v \}$$

CV μ exists and belongs to $\sqrt[q]{}$,

$$M_{4} \leq M_{2} \Rightarrow ev M_{1} \leq ev M_{2},$$
 $ev (M_{1} + M_{2}) \leq ev M_{1} + ev M_{2},$
 $ev (YM) = Yev M,$

and hence

$$g(ev_{\mu_1}, ev_{\mu_2}) \leq g(\mu_1, \mu_2).$$

Comments

posity form [5] and consists of 28 typescript pages. Moreover, ideas of Item 2 are used in the paper [6] to develop an elementary theory of differential equations in the space $\angle O$ of funcy sets. Remark also the related paper [4].

References

- . Dancis D., Prade H. Fuzzy sets and systems: Theory and mobilications. Acad. Press, 1980.
- 2. Kuratowski K. Topology, 1 & 2. Acad. Press, 1966 & 68.
- 3. Rockafellar T. Convex analysis. Princeton Univ. Press,
- 4. Furi M. L., Ralescu D. A. Differentials of fuzzy functions. J. Math. Anal. Appl., 1983, 91, N° 2, 552-558.
- Бобылёв В. Н. Метрика Хаусдорфа в пространстве характеристических функций (нечетких множеств) и некоторые ее свойства. - ВИНИТИ, 26 января 1983 г., № 419-83Деп.
- 6. Обылёв В. Н. Нечеткая задача Коши. ВИНИТИ, 12 июля *983 г., № 3848-83Деп.