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Introduction. In 4965 L. A. 7adeh defined a fuzzy set by
¢xtending the usual set characteristic function to an infinite
valned one, .2 . The fuzzy subsets theory provides a methodology
and mathematical apparatus more adequate than the crisp ones
fcompare €.g» 1.). So, in a quite natural way an idea appears
to develop-a theory of fuzzy economical systems. But 7adeh’s
theorv does not allow to take a specific properties of economic
processes into consideration. Taking into cqnsideration these
specific properties of economic systems which we willnot discuss
rere we introduce and develop basic ideas of the indexed fuzzy
subsets,

In the first part of this ‘paper we define indexed t-norm, t-conorm
and indexed negation, which are used as set operators for indexed
fuz»y sets. In the second and third part we give the fundamental
definitions and properties of indexed fuzzy subsets. ¥e present
onty this theory of indexed fuzzy subseﬁs which will be neeessary

for sur farther considerations on economical systems.
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1, Indexed triangular norms.

et T be a subset of real numbers R and let G;O’17 denotes

the family of all functions g: T-»<{0,1> .

£0 1> <0, 1> ~£0,1%> .
T ¢ GT G ’ is
called indexed triangnlar norm (indexed t-norm for short) iff

2 £0,1?
T

’I‘N(g1,g2)(t) =0,
> 20,1

DEFINITION 1.1. A function TN : G

™M - if g',5% G and g'(t)= g%(t) =0 (teT) then

- if g & and g?(t): 1 (teT) then

™!, g?)(t) = TN(gQ,gU(t):g’(t) ;
2 _1 =2 0,1

€ GT

72: it g',e,8",8% 63701 ana g'(0) ¢ &'(1), ()¢ E3(t)
(teT) then TN(g',g%)(t) € TN(E?,2%) (%) ;
. g ,e?) = el g’) ,  g,8%e GTO A

3
4: N(TN(gY, %) ,8°) = (gt , N2, 80)), Vg',at e e Géo 12,

DEFINITION 1.2. A function CTN : Geo? ™% {0012, G;O,ﬂ,

which ie2 defined as t-norm exeept that the condition i1 is
is changed into |
cTt ¢« - if g ,gze (:;O 17 and g1(t)=g2(t)=1 (teT) then
crn(e’,2%)(t) = 1,
- if g ,gze G<O 12 and gz(t)z 0 (t€T) then
cTNg',g )(t):cw(gz,g’)m: g' (1)
is called indexcd triangular conorm (indexed t-conorm for short).
DEFINITION 1.5. An indexed negation is a mapping

. Géo ,1A G;O,w

[

such that

C1: C(Of)= 1f y Of’ 1f.€ Grf\o 1>

C2: C(C(f)) = 1;

VieT 0g(t)=0, 14(t)= 1

C3: C is strictly decreasing and continuous.

“f TH(.,.) is an indexed t-norm, then CTN(: ,-)= C(TN(C(-),C(-)J)

iz an indexed t-conorm and conversely TN(:,:)= G(CTN(C(-),C(+))).
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sxamples of indexed t-norms and indexed t-conorms are:

»i‘N;)(é;",g2) = oin(g', &%)

(1.41)
cr (g ,e?) = max(e',g")
TN1(£§1,82) = g &’
’ (1.2)
v, tet,e?) = A
'P!‘f&(g;"gz) 8 max(g1+ 82 - 1:{ ’ Of) (
13)

1 .2 ool 2
SN 7 .
2T (g',e) = win(g'+ 8" , 1g)

- ain(g)(4),22(1)) if max(g'(4),&%(t)= 1,
TN (& ,87)(t) =

if maX(g1(t>,82(t))<1

(1.4)
. 2 max(gl(t),22(t)) if min(g'(t),e%(t))= 0,
CTN, (g ,g7)( 1) 1 2
if min(g'(t),g"(t))» O
1t .- immediately seen that for each indexed t-norm TN we have:

’PNw(g1,gz) s ™(g', &) TNofg1,gz) .

5. Fundamental definitions and properties.

Let Y denotes arbitrary, but for further considerations fixed
cet. Next P(Y) denotes the family of all non-void subsets of Y.

Let F be a mapping from T to ?(Y). so, YVterT F(t)c Y.
Instead of F(t) we will write F,.

DEFINITION 2.1. &4 generalized Cartesian product of the sets

Py (teT), F(T) say, is the set of all functions f : T—>Y such

that f(t)eF, , VterT,

DEFINITION 2.2. An index fuzzy subset, v say, is a function

<0 L,1P ®
veE G .

A
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DEFINITION 2.3. An indexed fuzzy subset of F(T) , A  say,
<0,1? '
is a mapping A, : F(T) — Grp ' such that :

(1) if ¥(t)=0 then A (£)(t)=0 , VIeF(T) , Vtel "

fii) if there exists an element t €T such that f1(t)= fz(t)
then A (£1)(1) =4 (£2)(t) , f£1,f2er(m).

Example 1. Let T={teR : t30} and let for all teT F, =k,

Let us define an index .fuzzy subset v in the following way:

t if t€ 0,1 ,
vit) = -t+2 if t€ (1,27,
0 otherwise.

Now, let us ¢onsider the following indexed fuzzy subset Av :

AL()(E) = v(t) a4 L£(t)l feF(T), te€T .

Now, we are going to formulate another definition of indexed
fuzzy subset.
DEFINITION 2.4. Let A, (t€T) be a fuzzy svbset of F,. An

indexedfuzzy subset, A, say, is a mapping

0,1
A, e F(T)—‘GT such that

Av(fY(t)z At(f(t)) « v(t) |, feF(T), teT ,
where % denotes an operation such that:

- if A(f(t)) - v(t)=0 then A_(f)(t)=0.

Example 2. Let T, Ft and v are defined as in Example 1.

..

Now, let us consider the following fuzzy subsets A, (teaT)

t A lxt] if te 0,1y ,
Aylxy) = (~t+2)a Ix,l if te(1,2y,
0 otherwise.

Let us define an indexed fuzzy subset in the following way:

V ter(?) and Vter
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AL(E)IE) = A(E($)) A V(1) .

DEFINITION 2.5. An indexed fuzzy subset is called empty,
g say, if VfeP(1) and VteT A (£)(t)=0.

Let v'and v' are the index fuzzy subsets. ‘
DEPINITION 2.6. The indexed fuzzy subsets A+ and 4w are
equal, A= A v say, if V fe F(T) Av‘~(f) = Avu(f).

~ DEFINITION 2.7. An indexed fuszy subset A, contain an indexed
fuz",y subset Av\t ’ AV“C Av\ say, if er F(T) Avu{‘n\(Av\('g) . '

DEFINITION 2.8. A union of two indexed fuzzy subsets A, and
A v is the indexed fuzzy subset, ApvV Av“ say, such .that Vv fe F(T)
A u An(T) = CTR(AL (1), Ae(T)).

DEFINITION 2.9. An intersection of two fﬁzzy subsets A_, and
A_w is the indexed fuzzy subset, A N A u say, such that V £€ ®(T)
Av| N Av“(f) = TN(AV\ (f)’ Av"(f)) .

DEFINITION 2.10. Complement of an indexed fuzzy subset Av is
the indexed fuzzy subset,CAv say, such that Vte F(T) and Vien

Co(h. (£)(t if v(t)£0 ,
o, (e { SO (PIDAE ¥

0o if v(it)=0,
where Co 1s & negation.
We now write down some immediate and useful consequences of
Definitions 2.8, 2.9 and 2.40,
-Zvu Av

1
>

-}5nAv=¢ ,

- AV\ V Avn = AV“ UAV( ]
(commutative laws)

- AV,"\ AV“::AV“ nAv‘ s

- AV"' (W) (AV" [V AV‘) = (Avm UAvn) v Av\

associative laws
- Agua(hgun ) = (Agunhy) A kg, ( )

- De NMorgan Laws obviously hold if we model intersection,
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complementation respectiyely by an indexed t-norm TN, an
indexed negation C, and the indexed t-cohorm CTN

CTN = C(TN(C(-), C(+))) for union. We then have

TN = C(CTN(C(+), C{'))) which indicates that we can start
from indexed t-conorm and an indexed negation as-weil.

3. Algebraic qperations on indexed fuzzy subsets. Convex

indexed fuzzy subsets.

Let us consider a generalized set F(T) eunch that for any tel

F, are some linear reference spaces.

DEFINITION 3.1. For any two indexed fuzzy subsets Ay and Agu
by Av\*'Av“ an indexed fuzzy subset is understood whose membership
function is related to those of Av\ and Avu by

byt Ay () = sup TN(A (£, A (£9),

for any feF(T).

DEFINITION 3.2. For any two indexed fuzzy subsets A_+ and Av

by Agr- A, v an indexed fuzzy subset is understood whose membership

function is related to those of Av‘ and Avu by

) AV\\(f) = £ .Slf)-'g_f (AV‘ (f‘ ) Avu(f«)),

A

for any feF(T).

DETINITION 3.3, Let A be some indexed fuzzy subset of F(T)
and 4 some function from T to R. By A-A, such an indexed fuzzy

subset of F(T) is understood that

agBn)  if Veen aeh) # o,

. sup Av(f')(t) if f(t)= 0 and A(t)= O,
A (T)(1)= feF(T)

0 if a(t)= 0 and f(t)#0,
Av(é)(t) if a(t)# 0 and there exists tle T
such that % (t') =0, where



DEFINITION 3.4. An indexed fuzzy subset A < F(T) is called
convex if V', £2¢ ®(T) and Va,b> 0 such that a+b=1

S 2 1 2

ny/af 1 0f2) ¥ A () A AL(£9).

DEFINITION 3.5. An indexed fuzzy subset K C F(T) is called
indexed fuzzy cone if V fe F(T) and Va0

Vv(af)z Kv(f).

THEOREM 3 .1. An indexed fuzzy subset K, is a convex indexed
fuzzy cone iff .

(1) Vf£er(r) and Va>0 K (af)=EK/(f),

ry VL f2e ) x (£he £2) K (£1) w K (£2).

Veritably, let KV be an indexed fuzzy cone. Then taking into
acconnt definitions 3.4 and 3.5 we observe that

0t 2y 2 K (a(1-a) 11+ (1-0)at?) 3 K ((1-a)f") AR (af®)=

K (€1 aK (£2).
So (ii) holds.
Now, let the conditions (i) and (ii) be satisfied. Then K, is an
indexed fuzzy cone and Vf1,f2eF('1‘) and Vae(0,1) we get:

R (afh+ (1-2)12) 3 K (af?) & K ((1-2)£2) = K (£ A E (£7).

So, K, is an indexed convex fuzzy cone.

THEOREM 3.2. If A, A,wCK, with some given convex indexed

fuzzy cone, then Av‘-f- Av.. C Kv -
Indeed, taking into account Theorem 3.1 we see that for any
f1,f2c-, F(T) such that 1+ £22 fe F(T) we have
1 2
AT % K (f ) A K, (f ).
But for any indexed t-norm TN we have

T (1), K (£2)) € K (1) A K (£9).
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Hence
R () 3 TNE(£)), K (£2)). |
So, with respect to Definition 3.1, if tla f2=:feP(T) then
we have ' ."
x (£) sup  TN(E(f1), K (£2)) ¥
1+ £22 £ |
sup  TN(A, (£1), AW (ED)) = AT Ap(D).
e £2- ¢ | |

.For a given'foe F(T) and an indexed fuzzy subset Av we

define the indexed fuzzy subset {fO}A setting
v

{fO}Av( )= {

fe FIT).

A(T) it £=£° ,
O if £ £°,

THEOREM 3.3. If Kv is a convex indexed fuzzy cone then
o1 2 1 2

(e o+ {£8), ¢ {1+ 2} .

) Kv { .}Kv Kv

Indeed, from Theorem 3.1 for f==f1+ f2 we have

» 2

s Pl (0 5 M, K= {r'llg + {2 (D).

For the remaining f the inclusion is evident.

THEOREM 3.4. If {f'}; CA, and {£2}; c Ayv, then
v v
{fi}Kv*‘{fz}Kv € A+ Agn .

Actually, taking into account Definition 3.1 we see that
for £=2f14 f2 there holds:

{rlhg * &g (1) = m(k (£1), K (12)) ¢ TH(AL(E1), Au(£2))

sup  TN(A, (£1), AL (£2)) = AjtALn(f).
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0,1 ' '
Let Gy ’ be a family of all functions g : T—+{0,1> which

satisfies the following conditionms:

- if v(t)=0 then g(t)=0,

- if v(t)>0 ‘then g(t)>o0, teT.
<0, 1>
DEFINITION 3.6« Let reG, . The r-cut of the indexed fuzzy

subset A, is the (crisp) set
r
A, ={fe®(T) : A(f) 2T},
THEOREX 3.5. An indexed fuzzy subset A is convex iff for
£0,1? ) . ‘
any function re Gv ’ the set A£ is convex,

Proof. Let us assume that ¥V re Gy the set A7 is convex.

Let A (f2)3 A (f1) = r. Then 2¢ AT and at'+ (1-a)1%¢ A]
fae(0,1)). So,
aglat’s (1-a)22) pr=a (€)= 4 (£1) A A (£9), |
Fow, let A be & convex indexed fuzzy sdbset and let re,G§0'1>,
tle v, Av(f1) = r, Then AS we can define as a set of all
functions fze F(T) such that AV( f2) ;Av(f1). Because A, is convex

so. each function af'+ (1-a)f2, (a€(0,1)) belongs‘tb Ai. Hence

r .
AV ie convex,

4, Remarks,

Let ns note that if T is a singleton set (for example T= {t}),
then the definitions 1.1, 1.2 and 1.3 are the classical definitions
of t-norm, t-conorm and negation respectively. |

Now, let us assume that T:= {Z}, v(t) =1 and » denotes the
operation such that

A OE0E)) xv(t) s AL(T(L)).

Then the definitions 2.3 and 2.4 become the definition of fuzzy

N . 1
subset in %adeh s sense,
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