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ABSTRACT : Several transformations which enable implication functions in multi-
valued 1ogics to be generated from conjunctions have been proposed in the literature.
It = proved that for a rather general class of conjunctions modeled by triangular
norms, the generation process is closed, thus shedding some light on the relation-

ships hetween seemingly independent classes of implication functions.

0 - INTRODUCTION
It is now well=known (Alsina et al [1]1, Dubois [2], Prade [71) that a

good modei of a fuzzy set—theoretic intersection, or equivalently of a conjunction
functior n multivalued logics, is a triangular norm (Menger [6], Schweizer and
Sklar [81:. Using a De-Morgan-like transformation yields the corresponding model of
a fuzzy set-theoretic union or multivalued disjunction function. Let * be a triangu-
Ltar rorm, modeling a conjunction, and n a negation function. If P, @ ... are propo-
siticns, whose degrees of truth are v(P), v(Q) ... then

v(P n Q@ = v(P) * v(Q

v(IP) = n(v(P))
Several rechniques for deriving implicaticn functions from conjunctions have been

propcsed, in the past, namely (e.g. Valverde [101)

) VP > Q) = v(1T P A TQ) = nvP) * nv(@)))
o) v(P - Q) = sup{s, s € [0,1], v(P) x s < v(Q)}

The motivation of a) is clear. Transformation b) defines a pseudo—complement in a

Brouwerian lattice, and is related to the following identity in set theory
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AuB=A~B=Us, anscasl
where A - B 1is a set-difference and the bar stands for complementation. Although
apparent (v unrelated, these two classes of implication functions, and a third one
obtained v contraposition can be generated by the same processes if the class of
con‘unctinon operations from which they stem is enlarged. This is the topic of this
vaper. Atter a background on triangular norms and their functional representation

is rezalle=d, the main theorem is expressed and proved. The introduced transforma-

tions are applied to the basic t-norms.

1 - BACKGROUND
A triangular co-norm L (t-co-norm for short) is a two-place function

from 1 » | to I (where I denotes the real interval [0,1]) such that

D W, €1%, alb=bl a

) M@b €10, Gl Llc=al bl
i1i) if a < b and c <d, thenal c <bl d
ivy Ya€l,0La
1 L1 =

1

a

A continuous triangular co-norm L such that
vi) ¥ a €10,10, a L a > a (Archimedean property)
can be expressed in terms of a generator ¢ which is a continuous strictly increa-

sing function from I to [0, +e], with ¢(0) = 0,under the form (Ling [51)

sl b= (@) + glb)) 1)
where o = the pseudo-inverse of @, defined by
¢ 1(a) if a €10, g(1]
¢l = )
1 4if a € Le(1), +x)
if »(1y < +w, the t-co-norm 4 is said to be nilpotent ; otherwise the t-norm is
satd ta bhe strict.
Note that
0" o ¢ = id. 3
whiie @ - q* # id. Moreover @ is defined up to a positive multiplicative constant

A, Lo, and xp , A > 0, generate same the co-norm.



iy definition, a strong negation function n is a continuous strictly

decreas ng function from I to I, such that

/1) Yael, ntn@) = a
ST nd@) =1

Triitas [9] proved that any strong negation function n can be generated from a

cont auous strictly increasing function ¢ from I to [0, +w), such that ¢(0) =0
and ¢ (17" < +xo, under the form
(2 = o et - glan %)

1o a t-co-norm L and a strong negation function n, is associated a two-

place fun-tion from 12 to I defined by

5 * b = n(n(a) L nib)) (5)
(%) expresses a n-duality since then a Ll b = n(n(a) % n(b)) ; * is called a triangu-
lar rore it satisfies, i, ii, iii, and

x) Y a, T *a=a

ins—ead o7 iv and v respectively ; 4 satisfies vi if and only if * satisfies

i) ¥ a € 10,10, a * a < a

Then * and L are said to be Archimedean.

Any t-norm * is such that

aif b =1
Y (a, b) € 12, Tw(a, b) =4b if a =1 < a*b <min(a, b) (6)
0 otherwise
whi_e, 27 any t—-co-norm J-,
a ifb=20
¥ola, o 12, max(a, b) < ad b < T:(a, k) = b if a=20 7

1 otherwise
Note that min (resp. max) 1is a continucus t-norm (resp. t=co-norm) which does not

* - -
satisfy «i (resp. vi), and Tw (resp. Tw) is a non-continuous t-norm {(resp. t—co-norm).
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¢ - THEOREM

For any two—place operation @ on I, let us define the four following

tranc formations

- f{(@@ 15 the two-place operation on I defined by
alR@ib=boa (8)
—tfh {(®. < the two-place operation on I defined by
oLy @1 b =nta®nk) 9
wher= = a strong negation function. Clearly j; ° :fn = id.
- ?f (®: 3 the two-place operation on I defined by
al Q?(®)] b = sup{s, s € [0,1], a ® s < b} )]

=0if As, a®s <b

~'\): (¢: is the two-place operation on I defined by
al U @1 b = nb) @ nia) an
n
Coear:. j}; = :§n o ?L o :frw . :Yn and ?? express transformations a) and b).

Now, we can prove the following theorem, stated without proof in (Dubois

& Prade, L41) and partially in (Dubois & Prade [31)

Jf * is the t-norm min, or if * is a continuous Archimedean t-norm,

theri, we have

- €. fno‘é(ﬂ: jnm (12)
- €. R :fn s Eor = l/";o‘fm (13)

where n 15 a strong negation.

The contents of this theorem are sketched on the following diagram where

notatiors are introduced for the different operations derived from a triangular norm *,
cenjunction qg implication HU% implication
3 *xbh ————> a *> b " 3 %% b

NN

- A A n

\Tv~ i J:n an :fn j% AP ‘6
v ' v R v

//;T a *> b <———ji—~—— a/% b z:——jgi——;i a /4\' b

~\ 7 - . . . . .
&yw —" -mplication conjunction conjunction
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~ Moreover 1f * s issued from a nilpotent t-co-norm + by (5), then
ifr j  v oid., T.e. *x = J AN /4\' and *3> = *» = **>, provided that n and 1l have

the <ame cenerator @.

3 - PROUE

2.7 = Proof_of (12) (continuous Archimedean t-norms)

“he proof is given for slightly more general 2-place functions than conti-
nuous Ar:tiimedean t-norms, namely we do not assume @(0) = 0, j.e. we do not assume
axioms ~and ix to be satisfied. Then,Va 6[0, (F(O)] ’?*(a): 0.

a*b=nn) L nb)
*
= nlp (pn(a)) + o(n(bd)] (14
Ther

,ﬂZ?f(*)]b = sup{s, s € (0,13, @*(@(n(a)) + 0(n(s))) > n(b)}
Since pinia)) + en(s)) > @(0), the following reasoning is valid !

" pin(a) + en(s))) > nib)

p(ns)) > onk)) - 9(nlal)d

< nle (@) - on(a))] if a>b ;

ta s b, s, 0n(s)) >0 > 9ln(b)) - @(n(a)). Thus, we get:
nlo™ (@n() - en(aN] if a > b
TC b =a*» b= 15
1 ifa<hb
Then 0 (@) - 9na))) if a > nib)
e{fnof(ﬂﬂa=aAb: 16)
0 ifa < no
Then

atfofn o?(*)]b:a*éb:sup{s, s € 00,11, a A s < b}
. *
= maxlsue =, s € 00,11, n(s) > a}, supls, s € [0,11,n(s) < a, @ (p(s) - e(n(a))) < b}l

First suppos, s€00,13, n(s) > at = n(a) ;
secord, 'vi¢(s) - ¢(na))) <b
»0ls) = pna)) < o) if @(s) > on(a)) + @0
< @*(@(n(a)) + (b))
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et us check that the condition n(s) < a is satisfied for this choice of s,

oL e p(na)) + b)) < a.

“his inequality is eqguivalent to @*(@(n(a)) + @(b)) > n(a) which obviously
holas s e p(na)) + b)Y > p(n(a)) and w* o ¢ = id.

Now, if @(s) € @(n(a)) + ©(0) , then
e o et i) + D) < @ (pna) + @), ¥ b € [0,1]. Thus we get

s x5 b = max[n(a), o ((n(a) + p(b))]
= 9 (pn(a) + pb)) a7
= alY Dl
Note that U, (x3) = x> . Q.E.D.

.2 - Proof of (13) (Continuous Archimedean t-norms)

we proceed with the same relaxed assumptions as the proof of (12). It is

easv tn tiogure out that
0" (p(a) - (n) if nlb)
.ﬂﬂoﬁnofbﬂjb=aA'b= (18)

0 if ndb)

I
Q

v
Q)

Tren
a£Q€<)3%v jn o %’(*)]b = a * b = supf{s, s € [0,1], a /a\' s < b}
= max(n’a , supls, s € [0,11, n(s) < a, @ (p(a) - @(n(s))) < b}l

Note thsv v*(@(a) - o(n(s))) < b

Sp(a) - en(s)) < o) if @la) - @@ > ¢o(n(s))

< nlo (pla) - @)1 if a > b
Ity <o, ids, pn(s)) >0 > ¢Ga) - olb) ;
We ‘en ~heck that nfnl (pa) - @b))IT < a, if a > b .
Indeed this is equivalent to m*(@(a) - o)) < a
whizk ofviously hotds since o(a) - ¢(b) < ¢(a) and w* ° ¢ = id ;
Now, if ¢(a) - WO)<Y(n(s)) ,then
s £ ;ao‘?fgp(a)-tp(o)) <n o«.ﬂ((cg(a) - (b)), Vbelo,1].
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Thue e - [ maxCn(a), nlo (pa) - 9(b))I] if a > b
3 kA b=
1 ifa<h
but ¢ > ¢ tofa) - 9b)) and finally
nCo (pa) - b)) if a > b
e b = 19
1 if a <b
=) @ = al Y « € w1 b
Q.E.D

is assumed that (4, %, n) are based on the same generator ¢, i.e.

nia. = o () —ola)), ad b = @*(@(a) + o)), a*b =nh(adl nb)). It is easy

I

te “igure cut that @ o na) = (1) - 9(a), Y a. Hence

0 (91 = @a) + @(b)) .

a *=po - s*(w(n(a)) + (b))

Besides, if a > b

AT o) = pnaM] = nle (9a) - (b))]
dlo) + ob) - ©(ad)
vince a > b 2 ¢@a) - olb) < o)

snd noo @ (k) = @ (@) - k) if k < (D

it s bornen (1) = @a) + @(b) > (1) and a *> b = 1

1l

We have onroved that a *> b = a *> b.

It
*
U

Now wxe = o) = 77;(*3>
Don(*s)
A\ = X o) = ;fn(*:> = *,

1
>*

2
il
3
3/\
4
1

I~
|
3
—.
3
oY
>
Q
—

_______ W

The proof in this case can be obtained by straight-forward check for min .
The theorem does not hold for Ty .

de provide the results of the transformations for the four basic t-norms

1 tte sppended table 1, where n(a) =1 = a in any case.



t-norm # T (a3, b max(a + b - 1, O a.b min(a, b)
e e e e e
nat.ir discontinuous nilpotent strict non-Archimedean
S O

CO=TC T T:(a, b) min(a + b, 1) a+thb=-ab max{(a, b)

a xo o b if a =1 min(1, 1 - a + b) 1 -a+ ab max(1 - a, b)

- g 1 if a <1 min(1, 1 - a + b min(1, b/a) 1 if a<b
: b if a =1 (1 4if a = O b if a > b
........................ 8
-a .
- T 9f b >0 minCl, 1 - a + b) min(1, 1_b) 7 if a £ b
% 1T -aifb=20 (1 4if b =1) 1 -aifa>b
.................... ;______________________-_--__________________________-__________________-_
; at+b-1
a/{hz 0if b <1 max(a + b - 1, 0) max (0, 5 ) 0 if a +b <1
a it b =1 (0 if b = O aif a+ b >1
atb-1
<
5 /Q\ , 0 if a <1 max(a + b - 1, 0 max (0, 3 ) 0 if a + b <1
b if a =1 (0 if a = O b if a + b > 1

4r important consequence of the theorem is the closure of the generation
processes »f implication functions from a triangular norm based on transformations
ay ard £, Iterating these processes does not yield an uncontrollable birth of impli-
caticn tam-lies. This closure property is a strong point in favor of methods a) and
b). Morecver we have generated a new kind of conjunction operations A\ which coin-
cide wi<h classical conjunctions of the proposition calculus, but are not commutative
when nor-extreme truth values are combined. This lack of commutativity may be naturat

seme contexts when propositions which do not play the same role have to be combined
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in a coniunctive manner. For instance when P is to be combined with P + Q, for the
purpose H>f detaching Q ; or if the concept of time is accounted fdr, and P A Q
underlies tne assumption that P was known before Q. So we believe that this new class

of conjuncticns (and dual disjunctions) does not challenge our intuition.Unfortunately,
many of these operations are not associative either.

However, we do not claim that the closure theorem is a complete answer to
the prob.em of generating multivalued implication functions. Several families fall
outside our ‘ramework : for instance those derived from a conjunction and a negation

by means of the identity P> Q@ =P v (P A~ Q) ; or the implication proposed by Yager

£11], based or the power operation : a > b = b? !
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