On convexity of S(  $\eta_1$ ,  $\eta_2$  )

Projected from random intervals

Jiang Pei-rong

(Shenyang Institute of

Mechanical and Electrical Engineering.
China)

## Abstract

In this paper the convexity of S(71.72) projected from random intervals is studied, and the sufficient conditions of S(71.72) being convex fuzzy set are given.

## 1. Preparatory Knowledge

For convenience' sake, in this paper the repeated notations are given as a preparatory knowledge as follows. Their senses remain constant unless they are specified.

71 . 72 are independent continuous random variables.

 $F_1$ ,  $F_2$  are distribution functions of  $\eta_1$ ,  $\eta_2$  respectively.

 $p_{\chi}(x) p_{\chi}(x)$  are distribution densities of  $\eta_1$ ,  $\eta_2$  respectively.

For given two random variables, it is nothing serious that which one is denoted by  $\eta_1$ , therefore  $\eta_1$  denotes always the random variable the distribution function of which reaches  $\frac{1}{2}$  earlier than other one, and the other one is denoted by  $\eta_2$ . If they reach  $\frac{1}{2}$  at the same time, any one of the two can be denoted by  $\eta_1$ .

 $x_{0:1}$  is a point that satisfies  $F_1(x) = \frac{1}{2}$  if  $\{x \mid F_1(x) = \frac{1}{2}\}$  is a singleton set.

 $x_0$  is a point that satisfies  $F_2(X) = \frac{1}{2}$  if  $\{x \mid F_2(x) = \frac{1}{2}\}$ 

is a singleton set.

 $x_0$  is point that satisfies  $F_1(x)+F_2(x)=1$  if  $\{x \mid F_1(x)+F_2(x)=1\}$  is a singleton set.

 $x_0$  is a point that satisfies  $p_1(x)=p_2(x)$  if  $\{x \mid p_1(x)=p_2(x)\}$  is a singleton set.

Note:



Preparatory Theorem 1. Suppose that  $\eta_1$ ,  $\eta_2$  are independent continuous random variables having distribution functions  $F_1(x)$  and  $F_2(x)$ , then

Treparatory Theorem 2. Suppose that  $A \in \mathcal{F}$  (R) and  $\exists X_0 \in \mathbb{R}$  such that

 $\mu_{\underline{A}}(x)$  is nondecreasing if  $x < x_0$ ,

 $\mu_{\widehat{A}}(x)$  is nonincreasing if  $x>x_0$ ;

then  $\stackrel{\Lambda}{\sim}$  is a convex fuzzy set.

2. Sufficient Conditions of  $\S(\eta_1, \eta_2)$  Being a Convex Fuzzy Set

By the properties of distribution function of continuous

random variable, we can prove easily the following two lemmas:

Lemma 1. Suppose that  $\eta$  is a continuous random variable having distribution function  $F_{\eta}(x)$  and set  $A=\{x|F_{\eta}(x)=\frac{1}{2}\}$ , then A is a nonempty set and A is a closed interval if A is not singleton set.

Lemma 2. Suppose that 7 is a continuous random variable having distribution function  $F_{\eta}(x)$ , then  $\{x \mid 0 < F_{\eta}(x) < 1\}$  is a open interval. (we regard  $(-\infty, +\infty)$  as a particular case of the open interval)

Definition 1. Suppose that  $\eta$  is a continuous random variable.  $\eta$  is said to be strictly increasing if its distribution function  $F_{\eta}(x)$  is strictly increasing on  $\{x \mid 0 < F(x) < 1\}$ .

Proposition 1. If  $\eta$  is strictly increasing, there exists one and only one point  $x_1$  satisfying  $F_{\eta}(x_0) = \frac{1}{2}$ . The proof is clear.

Lemma 3. If  $\eta_1$ ,  $\eta_2$  are strictly increasing, there exist  $x_0$ , and  $x_0$ , such that

 $\mu_{s(\eta_1, \eta_2)(x)}$  is nondecreasing on (-\infty, x<sub>1</sub>).

 $\mu_{S(\eta_1, \eta_2)}(x)$  is nonincreasing on  $(x_{02}, +\infty)$ .

Proof: Since 71. 72 are strictly increasing, there exist  $x_{0.1}$  and  $x_{0.2}$  such that  $F_1(x_{0.1})=F_2(x_{0.2})=\frac{1}{2}$ . Due to the restriction of notations of 71 and 72 in the preparatory knowledge, we have  $x_{0.1} \le x_{0.2}$ .

 $\forall X_1 < x_2 \leq x_0 \leq x_$ 

 $\mu_{s(\eta_1, \eta_2)}(x_1) - \mu_{s(\eta_1, \eta_2)}(x_2)$ 

 $=F_{1}(x_{1})+F_{2}(x_{2})-2F_{1}(x_{1})F_{2}(x_{1})-F_{1}(x_{2})-F_{2}(x_{2})+$   $+2F_{1}(x_{2})F_{2}(x_{2})$   $=(\frac{1}{2}-\epsilon_{1})+(\frac{1}{2}-\delta_{1})-2(\frac{1}{2}-\epsilon_{1})(\frac{1}{2}-\delta_{1})-(\frac{1}{2}-\epsilon_{2})-(\frac{1}{2}-\delta_{2})$   $+2(\frac{1}{2}-\epsilon_{2})(\frac{1}{2}-\delta_{2})$   $=-\epsilon_{1}+\epsilon_{2}-\delta_{1}+\delta_{2}+\epsilon_{1}+\delta_{1}-\epsilon_{2}-\delta_{2}-2\epsilon_{1}\delta_{1}+2\epsilon_{2}\delta_{2}$   $=2(\epsilon_{2}\delta_{2}-\epsilon_{1}\delta_{1}).$ 

Since  $F_1(x)$  and  $F_2(x)$  are nondecreasing, we have  $0 \le \varepsilon_2 \le \varepsilon_1 \le \frac{1}{2}$ .  $0 \le \delta_2 \le \delta_1 \le \frac{1}{2}$ .

Thus  $\mu_{s(\eta_1, \eta_2)}(x_1) - \mu_{s(\eta_1, \eta_2)}(x_2) \leq 0$ , hence  $\mu_{s(\eta_1, \eta_2)}(x_1)$  is nondecreasing on  $(-\infty, x_{0,1})$ .

In the same manner, we have that

 $\mu_{S(\eta_1, \eta_2)}(x)$  is nonincreasing on  $(x_{0,2}, +\infty)$ . By Lemma3, following Theorem is clear.

Theorem 1. Suppose that 71.72 are strictly increasing and  $x_{0.1} = x_{0.2}$ , then we have

 $s(\eta_1, \eta_2)$  is a convex fuzzy set and  $\max_{\mu} \mu_{s(\eta_1, \eta_2)}(x) = \mu_{s(\eta_1, \eta_2)}(x_0) = \frac{1}{2}$ .

Lemma 4. Suppose that  $\eta_1,\eta_2$  are strictly increasing and  $\chi_0$ ,  $\chi_0$ , then

 $\mu_{s(\eta_1, \eta_2)(x) > \frac{1}{2}}$  on  $(x_0, x_0)$ .

Proof:  $\forall x \in (x_{0.1}, x_{0.2})$ , we have

 $F_2(x_{0,1}) \le F_2(x) < \frac{1}{2} < F_1(x) \le F_1(x_{0,2}).$ 

hence  $\varepsilon_1 = |F_1(x) - \frac{1}{2}| > 0$  and  $\delta_1 = |F_2(x) - \frac{1}{2}| > 0$ ,

thus  $\mu_{s(\eta_1, \eta_2)}(x)=F_1(x)+F_2(x)-2F_1(x)F_2(x)$ =\frac{1}{2}+\varepsilon\_1 +\frac{1}{2}-\delta\_1 -2(\frac{1}{2}+\varepsilon\_1)(\frac{1}{2}-\delta\_1)(\frac{1}{2}-\delta\_1)

 $=\frac{1}{2}+2\epsilon_1 \delta_1 > \frac{1}{2}$ 

Lemma 5. Suppose that  $\eta_1,\eta_2$  are strictly increasing and  $\chi_0 < \chi_0 > 0$ . Set  $A = \{x \mid F_1(x) + F_2(x) = 1\}$ , then we have that

- (1) A is a nonempty set.
- (2) If A is a singleton set  $\{x_0\}$ , then  $x_{0,1} < x_0 < x_{0,2}$ .
- (3) If A is not a singleton set, then A is a closed interval and  $A = (x_{01}, x_{02})$ .

The proof is trivial and unnocessary.

Lemma 6. Suppose that 71.72 are strictly increasing and  $A=\{x\mid F_1(x)+F_2(x)=7\}$  is not a singleton set, let  $A=\{x',x''\}$  (see lemma 5), then we have that

$$F_1(x) \equiv 1$$
 if  $x \ge x$ ,

$$F_2(x) \equiv 0$$
 if  $x \leq x''$ 

Proof: Assume  $F_1(x) \not\equiv 1$  if  $x \ge x'$ , then there exist at least one point  $\overline{x} > x'$  such that  $\frac{1}{2} < F_1(\overline{x}) < 1$ . Hence  $F_1(x)$  is strictly increasing and  $F_2(x)$  is nondecreasing on  $(x', \overline{x})$ , thus there exist at most one point x such that  $F_1(x) + F_2(x) = 1$ . This means that  $A = \{x \mid F_1(x) + F_2(x) = 1\}$  is at most a singleton set. This contradicts the hypothesis, hence  $F(x) \equiv 1$  if  $x \ge x'$ .

In the same manner, we have

$$F_2(x) \equiv 0$$
 if  $x \leq x'$ .

Theorem 2. Suppose that  $\eta_1$ ,  $\eta_2$  are strictly increasing and  $A=\{x\mid F_1(x)+F_2(x)=1\}=\{x', x''\}$  (x'< x'') then

 $S(\eta_1, \eta_2)$  is a convex fuzzy set, and  $P_{S(\eta_1, \eta_2)}(x) \equiv 1$  on A=(x, x').

Proof: From lemma 5, it is known that  $A=(x',x'')\subset (x_{01},x_{02})$ , namely,  $x_{01}< x'< x''< x_{02}$ . And from lemma 6, it is known that  $F_1(x)\equiv 1$  if  $x\geq x'$  and  $F_2(x)\equiv 0$  if  $x\leq x''$ .

On (X01, x'):

Since  $\mu_{s(\eta_1, \eta_2)}(x)=F_1(x)+F_2(x)-2F_1(x)F_1(x)=F_1(x)$ ,  $\mu_{s(\eta_1, \eta_2)}(x)$  is nondecreasing.

Since 
$$\mu_{s(\eta_1, \eta_2)}(x) = F_1(x) + F_2(x) - 2F_1(x)F_2(x)$$
  
=  $1 - F_2(x)$ 

 $\mu_{s(\eta_1, \eta_2)}(x)$  is nonincreasing.

on (x', x'');  $\mu_{s(\eta_1, \eta_2)}(x) \equiv 1$ .

From lemma 3, it is known that:

$$0n (-\infty, x_{01})$$
:

$$(-\infty, x_{01}): \mu_{\$(\eta_1, \eta_2)}(x)$$

is nondecreasing.

On 
$$(X_{0,2}, +\infty)$$

On 
$$(x_{02}, +\infty)$$
:  $\mu_{s(\eta_{1}, \eta_{2})}(x)$ 



is nonincreasing.

In summing up, the monotonic cases of \$(?1, 72) are illustrated as figure, hence  $s(\eta_1, \eta_2)$  is a convex fuzzy set  $\mu_{s(n_1, n_2)}(x) \equiv 1$  on (x', x'').

Lemma 7. Suppose that  $\eta_1$ ,  $\eta_2$  are strictly increasing, and there exists one and only one point  $x_0$  such that  $F_1(x_0)+F_2(x_0)=1$ .

(1) If  $p_1(x) > p_2(x)$  on  $(x_{01}, x_{0})$ , then

 $\mu_{S(\eta_1, \eta_2)}(x)$  is strictly increasing on  $(x_0, x_{02})$ .

(2) If P<sub>1</sub>(x)< p<sub>2</sub>(x) on (x<sub>0</sub>, x<sub>0</sub><sub>2</sub>).

 $\mu_{s(\eta_1, \eta_2)}(x)$  is strictly decreasing on  $(x_0, x_{02})$ .

Proof: (1)  $\forall x_1, x_2 \in (x_{01}, x_0) \text{ and } x_1 < x_2$ .

from preparatory Theorem 1, we have

$$\mu_{s(\eta_1, \eta_2)(x_1)-\mu_{s(\eta_1, \eta_2)(x_2)}}$$

$$=F_{1}(x_{1})+F_{2}(x_{1})-2F_{1}(x_{1})F_{2}(x_{1})-F_{1}(x_{2})-F_{2}(x_{2})$$

$$+2F_{1}(x_{2})F_{2}(x_{2})$$

$$= \frac{1}{2} + \epsilon_1 + \frac{1}{2} - \delta_1 - 2(\frac{1}{2} + \epsilon_1)(\frac{1}{2} - \delta_1) - (\frac{1}{2} + \epsilon_2) - (\frac{1}{2} - \delta_2) + \frac{1}{2} - \frac{1}{2} -$$

$$+2(\frac{1}{2}+\epsilon_2)(\frac{1}{2}-\delta_2)$$

$$=2(\varepsilon_1 \delta_1 - \varepsilon_2 \delta_2)$$

=2 (
$$\varepsilon_1$$
 ( $\delta_2$  + $\Delta\delta$ )- $\delta_2$  ( $\varepsilon_1$  + $\Delta\varepsilon$ )]

Since  $F_1$  (x) is strictly increasing on (x<sub>0</sub><sub>1</sub>, x<sub>0</sub>) and  $F_2$  (x) is nondecreasing,  $0<\epsilon_1<\delta\leq\delta_2$ .

Since  $p_1(x) > p_2(x)$  on  $(x_0, x_0)$ ,  $\Delta \varepsilon > \Delta \delta$ .

Hence  $\mu_{s(\eta_1, \eta_2)}(x_1) - \mu_{s(\eta_1, \eta_2)}(x_2) < 0$ .
This implies  $\mu_{s(\eta_1, \eta_2)}(x)$  is strictly increasing.
The proof of (2) is similar to (1) so we omit it.
By lemma 3 and lemma 7, we have

Theorem 3. Suppose that  $\eta_1$ ,  $\eta_2$  are strictly increasing and there exists one and only one point  $x_0$ . If  $p_1(x) > p_2(x)$  on  $(x_0, x_0)$  and  $p_1(x) < p_2(x)$  on  $(x_0, x_0)$ , then  $s(\eta_1, \eta_2)$  is a convex fuzzy set and

Theorem 4. Suppose that  $\eta_1,\eta_2$  are strictly increasing and there exists one and only one point  $x_0$ , and  $p_1(x)$ . Exe continuous on  $\{x_0, x_0, x_0, x_0\}$ .

- (1) If  $p_1(x)>p_2(x)$  on  $(x_{01}, x_{02})$ ,  $p_1(x)$  is nonincreasing and  $p_2(x)$  is nondecreasing on  $(x_0, x_{02})$ , then  $s(\eta_1, \eta_2)$  is a convex fuzzy set.
- (2) If  $P_1(x) < P_2(x)$  on  $\{x_{0:1}, x_{0:2}\}$ ,  $P_1(x)$  is nondecreasing and  $P_2(x)$  is nonincreasing on  $\{x_{0:1}, x_{0:2}\}$ , then  $\S(7_1, 7_2)$  is a convex fuzzy set.

Proof: (1) From lemma 5, it is known that  $x_0 : x_0 : x_0$ 

Since  $p_1(x)$ ,  $p_2(x)$  are continuous and  $F_1(x)$ ,  $F_2(x)$  are derivable, by the preparatory theorem, we have

 $\mu_{s(\eta_1, \eta_2)}(x) = F_1(x) + F_2(x) - 2F_1(x)F_2(x)$ .

$$= p_1(x)(1-2F_2(x))-p_2(x)(2F_1(x)-1).$$

Since 
$$\frac{2F_1(x)-1}{1-2F_2(x)}$$
 is nondecreasing and  $\frac{2F_1(x_0)-1}{1-2F_2(x_0)}$ 

$$= \frac{2F_1(x_0)-1}{1-2(1-F_1(x_0))} = 1, \text{ hence } \frac{2F_1(x)-1}{1-2F_2(x)} \le 1, \text{ namely,}$$

$$2F_1(x)-1 \le 1-2F_2(x)$$
, and since  $p_1(x)>p_2(x)$ , we have  $(\mu_{S(\eta_1, \eta_2)}(x))=p_1(x)(1-2F_2(x))-p_2(x)(2F_1(x)-1)\ge 0$ .

This implies  $\mu_{s(\eta_1, \eta_2)}(x)$  is nondecreasing on  $(x_0, x_0)$ .

On  $(x_0, x_0)$ :

Since p<sub>1</sub> (x) is nonincreasing and p<sub>2</sub> (x) is hondecreasing.

$$\frac{p_1(x)}{p_2(x)}$$
 is monotone decreasing, and 
$$\frac{p_1(x)}{p_2(x)} > 1$$
.

$$\frac{2F_1(x)-7}{1-2F_2(x)}$$
 is monotone increasing and 
$$\frac{2F_1(x_0)-1}{1-2F_2(x_0)}=1.$$

If 
$$\frac{p_1(x)}{p_2(x)}$$
 and  $\frac{2F_1(x)-1}{1-2F_2(x)}$  are non-intersecting, namely,

$$\frac{P_{1}(x)}{P_{2}(x)} > \frac{2F_{1}(x)-1}{1-2F_{2}(x)}, \text{ then } (\mu_{s(\eta_{1}, \eta_{2})}(x))'=$$

$$= p_1(x)(1-2F_2(x))+p_2(x)(1-2F_1(x))>0$$
, hence

 $\mu$  s (  $\eta_1$ ,  $\eta_2$  )(x) is strictly increasing.

If 
$$\frac{p_1(x)}{p_2(x)}$$
 and  $\frac{2F_1(x)-1}{1-2F_2(x)}$ 

have an intersection point

 $\bar{X} \in (x_0, x_{0,2})$  as shown

in Figure on right,



then 
$$\frac{p_1(x)}{p_2(x)} \ge \frac{2F_1(x)-1}{1-2F_2(x)}$$
 on  $(x_0, \bar{x})$ ,

hence  $\mu_{S(\eta_1, \eta_2)}(x)$  is nondecreasing on  $(x_0, \bar{x})$ .

In the same manner, we have

$$\mu_{s(\eta_1, \eta_2)}(x)$$
 is nonincreasing on  $(\bar{x}, x_{02})$ .

Thus the monotonicities of  $\mu_{\S(\eta_1, \eta_2)}(x)$  on  $(x_0, x_0)$  can only be in the two cases as shown in Figure below.

$$x_0$$
  $x_0$   $x_0$ 

Referring to lemma 3, we have that \$(71.72) is a convex fuzzy set.

(1)  $\mu_{S(\eta_1, \eta_2)}(x)$  is nondecreasing on ( $-\infty$ , min  $\{x_0, x_0\}$ )
(2)  $\mu_{S(\eta_1, \eta_2)}(x)$  is nonincreasing on  $\{x_0, x_0\}$   $+\infty$ .

Proof: If  $x_{0,1} < x_{0} \le x_{0,0} < x_{0,2}$ :

Since  $p_1(x)>p_2(x)$  on  $(x_0)$ ,  $\mu_{s_1}(\eta_1, \eta_2)(x)$  is nondecreasing on  $(x_0)$ ,  $x_0$  (see lemma 7). And by lemma 3,  $\mu_{s_1}(\eta_1, \eta_2)(x)$  is nondecreasing on  $(-\infty, x_0)$ , since

$$\frac{p_1(x)}{p_2(x)} < \eta$$
 and  $\frac{2F_1(x)-1}{1-2F_2(x)} > 1$  on  $(x_0, x_0)$ ,

$$\frac{P_1(x)}{P_2(x)} < \frac{2F_1(x)-1}{1-2F_2(x)}$$
, that is,

 $p_1(x)(1-2F_2(x)) < p_2(x)(2F_1(x)-1)$ . Hence

 $\{\mu_{s(\eta_1, \eta_2)}(x)\}^{\prime} < 0$ , thus  $\mu_{s(\eta_1, \eta_2)}(x)$  is

nonincreasing on  $(x_{00}, x_{02})$ .

And by lemma 3,  $\mu_{s(\eta_1, \eta_2)}(x)$  is nonincreasing on  $(x_0, +\infty)$ .

If  $x_{0,1} < x_{0,0} < x_{0,2}$ :

In the same manner, we have that

 $\mu_{s(\eta_1, \eta_2)}$  (x) is nondecreasing on ( $-\infty$ , x<sub>0</sub>, ).  $\mu_{s(\eta_1, \eta_2)}$  (x) is nonincreasing on (x<sub>0</sub>, + $\infty$ ).

Thus  $\mu_{\S(\eta_1, \eta_2)}(x)$  is nondecreasing on  $(-\infty, \min\{x_0, x_{0,0}\})$ .

 $\mu_{S(\eta_1, \eta_2)}(x)$  is nonincreasing on  $(\max\{x_0, x_0, x_0\}, +\infty)$ .

From lemma 8, we have

Theorem 5. Suppose that  $7_1$ ,  $7_2$  are strictly increasing and there exists one and only one point  $x_0$ ,  $p_1(x)$  and  $p_2(x)$  are continuous on  $(x_0_1, x_0_2)$  and there exists one and only one point  $x_0_0$ . If  $x_0 = x_0_0$ ,  $p_1(x) > p_2(x)$  on  $(x_0_1, x_0_2)$  and  $p_1(x) < p_2(x)$  on  $(x_0_1, x_0_2)$  is a convex fuzzy set.

Theorem 6. Suppose that  $\eta_1$ ,  $\eta_2$  are strictly increasing and there exists one and only one point  $x_0$ ;  $p_1(x)$ ,  $p_2(x)$  are continuous and there exists one and only one point  $x_0$  ( $x_0 \neq x_0$ ) on ( $x_0$ ,  $x_0$ );  $p_1(x) > p_2(x)$  on ( $x_0$ ,  $x_0$ )

and  $p_1(x) < p_2(x)$  on ( Xee. Xe.2 ). If  $p_1(x)$  is nonincreasing and  $p_{x}(x)$  is nondecreasing on  $\min\{x_0, x_0, x_0\}$  max  $\{x_0, x_0\}$ then  $s(\eta_1, \eta_2)$  is a convex fuzzy set.

Proof: If Xo1 < xo < xo < xo 2:

Since  $p_{1}(x)$  is nonincreasing and  $p_{2}(x)$  is nondecreasing on  $(x_0, x_0)$ ,  $\frac{p_1(x)}{p_2(x)}$  is strictly decreasing from 1. And

 $\frac{2 F_1(x)-1}{1-2 F_2(x)}$  is monotone increasing to 1 on  $\{x_0, x_0\}$ . Hence there exists one and only one point TE (x0. %)

such that 
$$\frac{p_1(\bar{x})}{p_2(\bar{x})} = \frac{2F_1(\bar{x})-1}{1-2F_2(\bar{x})}$$
. Since  $\frac{p_1(x)}{p_2(x)} \ge \frac{2F_1(x)-1}{1-2F_2(x)}$ 

on  $[x_0, \overline{x}]$ ,  $[\mu_{s(\eta_1, \eta_2)}(x)] \ge 0$ , therefore  $\mu_{s(\eta_1, \eta_2)}(x)$  is

nondecreasing on [xe. x] Similarly, it can be proved that Es(n. n. )(x) is nonincreasing on (x, x). Referring to lemma 8,  $s(\eta_1, \eta_2)$  is a convex fuzzy set.

 $x_0 < x_0 < x_0 < x_0$ :

In the same manner as above, it can be known that  $\mu_{S(71.72)}(x)$  is a convex fuzzy set. The whole proof is ended.

The author is thankful for Professor Wang Pei-zhuang's instruction.

References

<sup>1.</sup> Wang Pei-zhuang, Sanchez, E., Treating a fuzzy subset as a projectable random subset, Fuzzy Information and Decision Processes, Edited by M.M. Gupta and E. Sanchez, North-Holland Publishing Company, 1983, 213-219.

<sup>2.</sup> Jiang Pei-rong, Distribution of fuzzy subset projected

from random intervals, BUSEFAL, (15), 1983, 64-71.

3. Wang Pei-zhuang, Theory of fuzzy set and its applications, Shanghai Publishing House of Science and Technology.