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~"cents are an important source of information
aceu- ar internal structure of the data set.It will be aprlied
‘ e . . . D T
b crecification of the inner product induced on R*.Introduce fuzzy

c~yvisriance matrices sfenerated by labelled data,
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orriad with the help of Cp  introduced above,
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1. 4713 verformance index the labelled data senerate a structure of

. \ o)

inner product on R+ .
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e o reria . and C. are constructed in such a manner that the

s+ rrms presented before can be used without significant modifica-

J.Ef> o=t jllustration

L& an illustration of the clustering methods discussed above,
we nomsider the data set known as Gustafson’s crosss(éee Fig,1) ,which
~ersiste of two classes of points with a certain overlap..siX points
cnedcoree in Fig,1 are labelled.

“nr commarison we test four algorithms:Fuzzy c-means without the
e -+ ire labelled objects,and next the method A,B,and C.In order to
cuiiiate a character of convercence of the methods established we talke
‘nec aoerunt an index,which is a norm defined in the space U

ef)=max | usy-us"| (<8)

14i<c
1<4k<n

... .... The results are displayed in Fig.<.Fuzzy c-means alporithm
characterized by a slow rate of convergencejit is not suprising
o or e ine the fact that Buclidean distance prefers hyperell ipsoidal

vy s clusters ,while A,B,and C indicate the same speed of conver-
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orecver,we evaluate the methods tested calculating a sum of squared

‘er o0 ong between values of the membership functions of the labelled
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. swens s oand values of the computed membership functions,

C
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i=1 x€Xy

“i s yeoalts are summarized in the Tab.1.It is clear that introduction of
s e Tusmoy covariance matrices which control shapes of the senerated

st ers,makes it poscible to diminish the values of q,while the intro-
et ice a7 the constraints in terms of membership functions only,has

i criviuence on Q.

e results of the last method(C)are shown in Fig.1,

“
1

‘4 e 1,0alculated values of the membership functions for the labelled

natterns
atLeETT ~ label Fuzzy c-means A B C
1.0,0.0 0.71,0.49 0.64,0.3%6 0.99,0.,01 0.99,0.01

X, 0.5,0.5 0.78,0.c2  0.91,0,09 0.92,0.08 0.81,0.19

% 1.0,0.0 0.16,0.64  0.66,0.%4 0,99,0.01 0.99,0.01

5, 0.0,1.0 0.74,0.26  0.,20,0.80 0,00,1.00 0,00,1,00

0.5,0.5 0.89,0, 1 0.01,0.99  0,00,1.00 0,13,0,87

X 5.0,1.0 0.%5,0.65 0.50,0.50 0,00,1.00 0,00,1.00
5,78 4.60 1.88 1.40
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of clustering produced by the
method C.
1x (@)
(o)
x(e 1)
1.0
0.9

05+ \s\

o4
034 ¢
02 4

0.1 1

# Fuzzy c-means
* A

x B8
o C

Fiz.2.The index of conver-
sence e (1) vs.number of
iterations for wvarious
clustering methods.,.



