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CRITERIA FOR NON - INTIRACTIVITY OF FUZZY

LOGIC COHTROLLER RULZS

Siegfried Gottwald

Logic Group, Dept. ‘hilosophy, Karl
farx University, Leipzig, G.D.R.

ibstract Usually a fuzzy loglic controller is given by a

set of relation equations or as the fuzzy union
ot ¢ family of control rules. Considering this secind appro-
ach we discuss the problem if a controller constructed this
way really works in accordance with these control rules. Un-
fortunately, this is not always the case. Therefore, our main
concern here is to look for sufficient conditions which gua-
rantee that a controller finally works in accordance with the
rules he was constructed from.

1. rfuzzy Logic Controllers

fuzzy logic controller - short: FLC - is some device that

conrects fuzzy subsets of an input space U with fuzzy subsets of
an cutput space V (cf. /4/,/3/,/2/).

hese fuzzy sets normally are considered as representing the
neanings of linguistic values of a linguistic input resp. output
variable. Hence, a FLC is a - finally: automatized - realization
of @ (simple) process of approximate reasoning.

~athematically, such a FLC R is a fuzzy subset of the carte-

gian oroduct UxV, i.e. a fuzzy binary relation. And the fuzzy
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Sutpus B for a given fuzzy input A is given by the relation

2nuation 3 = AeR, i.,e., through

/uB(y) = max min(/uA(X),/uR(X,y)) . (1)
xelU
[T we adopt the point of view that the generalized membership

values /uA(x),/uB(y) ete. are generalized truth values of a
riny volued membership relation € , i.e. if we take

/uA(X) = [XE.A] , /uB(y) = [yaﬁB] (2)
with Zi{] for the truth value of expression H of a general-
ized set theoretic language, we may write formula (1) as

(vesl=[{V (xeaa (x,m)eR)], (3)
interpreting existential quantification \/ and conjunction A of
nany valued logic as taking the supremum resp. minimum.

‘et. more is obvious now. As with crisp sets also for fuzzy
gete any fuzzy binary relation can be considered as a fuzzy map-
ping {(in the generalized sense not including uniqueness condition).
iher, Tirstly, equations(3) reads as

B = R"A , (4)
T.¢, 3% is the fuzzified full picture of A under R. And secondly,
f'ror {3) and many valued logic it is obvious that the interpret-
atinong of \/ and A, mentioned above, are not the only possible
oner,
~ence, by (4) and especially by (3) we get a more general
lonk at FPLC's. Of course, as (3) describes the usual understan-

' o

din~ of go-called fuzzy modus ponens of approximate reasoning,

our nresent discussion gives also a coherent view of a lot of

‘erent realizations of that generalized inference procedure

ag discussed e.g. by MIZUMOTO/ZINMERMANK /6/.



. The Construction of IFLC's
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Surely, there is no uniform way to construct a FLC. But at
sresent two strongly connected methods are mostly used. The
startins point in each case is a (finite) set of control rules
=> B, , i1€I (5)

connecting values Ai of an input variable with values Bi of

an output variable. The FLC R to be constructed is intended to
realize

2. o= RUA for all i. (6)

first possibility to get R is to consider (6) as a system
~ ¢ouations with R as unknown fuzzy mapping/fuzzy relation, and
ty trv to solve this system. In this direction yet only very few
rogults are known: in most cases systems with one equation only
nave been considered.

s n second possibility to get R one chooses usually the fuzzy
unirn of all the rules (5). To be able to do so, first one has to

represent each one of the rules Ai'=$ Bi by a fuzzy subset of

Ux 5. ilready here there exist a lot of different proposals; some
them are

A=>B = AxB, (7)

A =205 = (A x B)wu (K x ) , (8)

Aa=>3 = (ExT) v (Tx3m . (9)

#or more such proposals cf. /5/,/6/. Here ﬁ,V are the fuzzy sub-
s2te of U resp. V with membership value 1 always; and the carte-
cian product X XY, the union XuY, and the complement X of
Tazvy sets X,Y are defined through
;{x,y)SXxY] = [XCXA yEY], (10)
‘ze xvY] = [zeXv zeY], (11)
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[zf'}'{'] = ["'zfX] = [z#X]; (12)
A,v ,™1 any conjunction, disjunction, negation of many valued
iogle,
Jor negation = we will consider only the case
-t = 1 -1 (13)
Ior everyv truth value t, identifying here and furthermore always
the connectives of many valued logic with their corresponding
truth value functions.
“nr conjunction and disjunction we discuss different cases,

alwavs assuming that one conjunction and one disjunction are con-

nected through delorgan formulas. Zspecially we will consider:

5 At = min(s,t) , s vt = max(s,t) , (14)
5 & t = max(0,s+t-1) , syt = min(1,s+t) , (15)
0 if s,t<1

s At otherwise
sometimes we have to consider more than one conjunction or dis-
Junction at once, then we use indices; and if we use indices to-
~ether with fuzzy union or fuzzy intersection of two fuzzy sets
these gset theoretic operations then are supposed to be character-
tzed

LoZa kD

by the suitable many valued connective with same index 4 la
(o L1 (V..), (3..) denote quantification in our classical
metslanguage.,

Having "coded" the rules Ai=¢IBi in such a way by fuzzy
cubsets of UxV, the whole FLC R is defined by
ro= Yia=3s (17)

.8, by

[Gyer] = [V e a;=3,0] . (18)
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3. *he Yroblem of Interactivity

nfortunately, this second

fv f

/1 in accordance with (6),

that R, # R"A, =
(3]

AjoR. Thus, if a
coritnm it

s

ent of that from R"Aj. This means,

tna7 the decision-making rules (5)

veiinition 1: 4 generating family

construction of a FPLC R out of a

i.e. there exist j€ I such

FLC is part of a decision al-

may happen that the decision coming from Bj ig differ-

in the sense of control theory,

are interacting.

Ai=>Bi,i€I of a FLC R 1is

calioed interactive iff there exist an index k€ I such that
L F 1"Ak; otherwise the family Ai=§>Bi,i€ I 1is called mnon-
interactive
ecnuse for fuzzy sets X,Y it holds true

io= Y iff XeY and YE X , (19)
the vroblem of non-interactivity of a generating family of a IFLC
50 ]
vefinition 2: Suppose R  to be a FLC and Aiag-Bi,iG 1 a gener-

atine family of R. We say that R
the civen generating family iff
R”Ai =2 Bi for all i ;

-~
wval i

G4, € B, for i
SRS Bl for all i

. 13) and (18) we have for each ve€Y
[verB] = [V (xea a M((x,v)e(a,=B)))] .
<V,

A as natural properties of many valued

using o, € Wiol: , h .
JELng o(.l \é}xl, ence sup;

tle monotonicity of

nd we say that R has the gubset property w.r.t. this family

(20)
iff

(21)

immediately
(22)

for both of these guantifiers,

eristertial cuantification and conjunction, we get



7k

(Vi) (Ju,0([ve Bt] <fue Ag A (u,v)e (Ak=>Bk)]) (23)
a2z 0 sufficient condition for R to have the superset property;
{) VV9t9u9k>([V€ B-b] Z [U.E A_tA (u,V) ¢ (Ak#Bk)]) (24)

ag @ necessary condition for R to have the subset property. The
domeing of the variables which are quantified here are clear by
context.

“zeuming additionally \Lié sup; for both quantifiers of
(2, cordition (24) will become sufficient for the subset prop-
erty. Surthermore, for finite generating families Ai=#>Bi,i€ I
snd a4 finite universe of discourse U for the input fuzzy sets,
concition (23) now becomes a necessary one for the superset prop-
ert: of R = (U (A;=»B,).

Therefore, in the following we will assume that each many
vailuen existential ouantifier is interpreted as supremum, that
the —~enerating families of the #LC's are finite, and that also
the universes of discourse U,V are finite. This last assumption
i1 vwot obvious, but realized in most applications, and may be
avoized in principle with more difficult proofs. Also we assume
ot =11 the many valued conjunctions and disjunctions their mono-
tonicity, commutativity, and asgociativity, and <£/\ﬁ <ot & u,v’3

tor =11 these conjunctions A and disjunctions v .

;ropogition 1: Suppose R to be given by the generating rules

Ai=>Bi,ieI.

4 necegsary condition for the superset property of R is
(V£)( hgt(By) € het(ay) ) .

.1l L sufficient condition for the superset property of R is

(V)(By € (4y=>B)"A,) .
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i 1 necessary and sufficien® condition for the subset prop-

artv of R is
H h !
proofs are straightforward and shall not be considered in

The same will be the case with the proofs of the following

onegitions. The height hgt(X) of a fuzzy set X, used in (1),

‘he supremum of all membership values /uX(z), i.e. hgt(X)

[V.izen].

s s . P . . 1
befinition 3: Given two realizations Ri’Ri

2 of a controller

h:=¢1%_ ag a fuzzy gubset of UxV, we call R? a stronger

l

version of Li‘>Bi as Ri or Ri a weaker version of A, =¢B as R;
i 2
c RS .
i~ Rl

pogition 2: Suppose R},R? to be realizations of controller

+ oy

fe s
RNV 3

’W=§Bi’i€ I of a generating family of FLC R1,R2.

" RY is a weaker version as R; for each i and R1 has the

sunerset property, then also R2 has the superset proverty.

R . . 1 .
[f Ry is a stronger version as Ri for each i and R

1 has the

subset property, then also R2 has the subset property.

in

“re different realizations »>f a controller rule A=»B, presen-

},(8),(9) now can be compared with respect to their

strenght. Because of

o ey
oane

1A o
T vy
L ;

T

axDe (AxB)u(ExT) € (ExT) v (TxB) (25)

cree that all the fuzzy cartesian products are characterized

game many valued conjunction and both fuzzy unions by the

dizjunction, (7) gives the strongest and (9) the weakest ver-

G

£ 4 =»B. Thus, in (25) the superset property is transmitted

w left to right" and the subget property "from right to left".
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» et more concrete results now we will consider the cases
hy formulas (7) to (9) in more detail. Always we are inter-

[
[®

in necessary and in sufficient conditions for (23),(24) to

true, assuming the family Ai=>Bi,i€I as a generating one

the TLC R.

Case 13 (L=»B) = AXB

" has superset property, i.e. (23) holds true iff

(Vv,8)(Fu,k)([ve By) € [ueAt A(uEA A,V E Bk)]) . (26)

Troposition 3: Sufficient conditions for R to have the superset

PR
oL

nronerty are

(V) ngt(a) = 1) .
for A=Ay =ac (V) hat(By) € het(ay)) .

sorrespondingly, R has subset property, i.e. (24) holds true

YV v,u,t, k) ([ves, ]2 uea, aue s a, veB)]) . (27)

Croposition 4: Sufficient conditions for R to have the subset

onertv are

(V t,u48)( Ay ng A = 0) .
for always 06A4((5’\za~) < (a’M(?’)A"T:

(Vt,k#8)( hgt(By) A, hgt(AgngA) = 0) .

ere, (iii) is relevant e.g. if A, 1s distributive over A,.

Case 2: (A=>B) = (AxB)u(ExV)

“ n2g superset property iff

Vo, 5)(3u,k)([ve Bt]S[u €A, A1((u€Ak Ao VeBk) \Z uGKk)]). (28)



Froposition 5: Sufficient conditions for R to have superset prop-

ardy are
each condition of Prop. 3 .
{4 for /\2=&, v, =Y, /\16{1\_,&,A, usual product} :
(V) (1) ( hgt(By) € hgt(ay ny )
and also

(V£)( hgt(By) £ hgt(Ay)) .

s before, the proof is straightforward. For (ii) one has to

ase: ML g(oc & [3) = —.cby_fl. And now, R has the subset property

Vv,u,t,x)([ve Bt];[uEAt A ((nEA A, VEB,) Y, ueKk)] ) . (29)

rropogition 6: Sufficient conditions for R to have subset prop-

erty sre
for Ay =a : (YVo,kA6)( hgt(h v (A u B))) < 1)
(110 7or Ay =&, Vo=¥, A €§A,%,A, usual product} :
(Vt,x#6)( hgt(By) + hgt(Ay ng K ) < 1)

and also

(Vt,k#t)( hgt(A) Aq hgt(By) =0 )

Cage 3: (A=»B) = (ExV)u (UxB)

\

.

S
»

& hes superset property iff

Vv, ) (Fu, ) ([veB < [uea, Aj(ued vy veB)]) . (30)

froposition 7: Sufficient conditions for R to have superset prop-

ertv oare
(i} each condition of Prop. 5 .
fiiy it A distributes over V1:

(V£)( hgt(By) < hgt(By) Ay hgt(ay) ) .
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“innlly, R has subset property iff
(Vv,u,t,k)([veBt:[a [uEAt A(u€d v, vEBk)i]) . (31)

‘ropogition 8: A necessary condition for R to have subset prop-

Rk ok L A
A SNG4

(V)( hgt(B,) + hegt(a, n) B 1) .

j-£

Concluding Remarks

in discussing different realizations R of that procedure of
aoproximate reasoning that generalizes usual modus ponens, MIZU-
ome /5/ was considering unary operators C - represented e.g. by
hedces 1like: very, more or less,... - and asking to have realized

C(RM™A) = R"(CA)

beds

sy all fuzzy sets A.

: another point of view here we are interested to have real-

2. = RWA,
i i
Tor o piven family Af—»I%jiEI of pairs of fuzzy sets. With R
ga o W10 thig is the problem of non-interactivity. For some differ-
ent ways to construct R from ths family of all rules Ai=#'Bi we
~ot sufficient conditions for non-interactivity. These conditions
in nimost all cases are strong ones, indicating also some prefer-
ences of our case 1: (A=»B) = Ax B over the other ones.
Lsenerally, now it seems interesting to weaken the problem and
to ask for estimations of (some suitable kind of) difference of

and R”Ai for different R's. But this is another problem.
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