GENERALIZATION OF SOME RESULTS

OF ELIE SANCHEZ

Siegfried Gottwald

Logic Group, Dept. of Philosophy,

Karl Marx University,

Leipzig, G. D. R.

Abstract Recently E. Sanchez has given a necessary and sufficient condition for the existence of a solution of a fuzzy equation A * X = C, with * the extension of a given binary operation in the universe of discourse.

Using many valued logic we generalize this result and get a characterization also of the cases if A * X = C has only nearly a solution.

1. Introduction

Just recently E. SANCHEZ /5/ was considering the problem of solving set equations A * X = B for fuzzy sets A,B where the operation * extends an operation in the common universe of discourse of A,X. The problem is relevant e.g. for the arithmetics of fuzzy numbers. Using as in earlier papers /2/,/3/ essentially the language and results of many valued logics we will sketch here how these means are helpful to give his results a greater generality and power.

The present results have been found during a summer school in Primorsko/Bulgaria. The author kindly acknowledges his invitation and the encouraging and fruitful conditions of this meeting, realized by the organizers.

2. Logical Notation

Mainly the same notation as in /3/ is used. For many valued logic, especially, we do not distinguish the connectives and their corresponding truth functions. The set of generalized truth values is the real interval [0,1]; the connectives we use are conjunctions described by

$$s \wedge_1 t = \min(s,t) ,$$

$$s \wedge_2 t = \max(0,s+t-1)$$

and implications described by

$$s \rightarrow_1 t = \min(1, 1-s+t),$$

$$s \rightarrow_2 t = \begin{cases} 1, & \text{if } s \leq t \\ t & \text{otherwise} \end{cases}$$

Of course, this implication \rightarrow_2 is nothing else than the α -operation of E. SANCHEZ /4/,/5/. But, \rightarrow_2 is also that many valued implication operator which was used by K. GÖDEL /1/ for proving that intuitionistic propositional logic does not have a finite adequate matrix. Therefore we prefer to denote this operation as an implication.

We write | H to indicate, that formula H of our

many valued language always has truth value 1; and generally we denote by [H] the truth value of formula H.

For quantification we suppose that generalization \forall corresponds to taking the infimum of truth values:

$$[\forall x H(x)] = \inf_{x \in \underline{U}} [H(x)],$$

 \underline{U} the common universe of discourse for all our fuzzy sets, and that existential quantification \overline{J} corresponds to taking the supremum of truth values.

Obviously, with our notation

$$\models H_1 \rightarrow H_2 \quad \text{iff} \quad [H_1] \leq [H_2] \quad (*)$$

for \rightarrow any one of \rightarrow_1 , \rightarrow_2 . And with biimplication defined

 $H_1 \leftrightarrow H_2 =_{\text{def}} (H_1 \rightarrow H_2) \land_1 (H_2 \rightarrow H_1)$, again \rightarrow any one of \rightarrow_1 , \rightarrow_2 (but the same in both occurrences), we get

$$\models H_1 \iff H_2 \qquad \text{iff} \qquad \left[H_1\right] = \left[H_2\right]. \tag{+}$$

In the following, sometimes the choice of \rightarrow_1 , \rightarrow_2 or also of \hookleftarrow_1 , \hookleftarrow_2 is inessential. Then we will write \rightarrow resp. \hookleftarrow only. (In all these cases for \rightarrow , \hookleftarrow any connective may be chosen that meets condition (\mathbf{x}) , (+) respectively, but it is not necessary to take this more general point of view here.)

3. Set Theoretical Notation

Generalized membership within a fuzzy set we describe by our many valued membership predicate & putting

$$[x \in A] =_{def} /u_A(x)$$
.

The fact that a fuzzy set is uniquely characterized by its

membership function we use to introduce class terms. Having given a fuzzy set A and a formula H(x) of our many valued language such that

$$u_{A}(x) = [H(x)]$$
 for all $x \in \underline{U}$,

U the universe of discourse, we define class terms by

$$\{x \mid H(x)\} =_{def} A$$
.

The usual intersection of fuzzy sets A,B, denoted: A n_1 B, now can be characterized through

$$A \cap_1 B = \{x \mid x \in A \land_1 x \in B\},$$

the cartesian product e.g. through

$$A \times_1 B = \{(x,y) \mid x \in A \land_1 y \in B\}.$$

More generally, for every binary function f on the universe of discourse \underline{U} we write (\wedge any one of \wedge_1 , \wedge_2)

for the set

$$\{z \mid \exists x \exists y ((x \in A \land y \in B) \land_1 z \neq f(x,y))\}$$
,

outting additionally

$$[u \doteq v] = \begin{cases} 1, & \text{if } u = v \\ 0 & \text{otherwise} \end{cases} .$$

with this notation, the <u>extension principle</u> of L. ZADEH /%/ becomes:

Given an operation \star within \underline{U} , extend it to the fuzzy subsets of \underline{U} by putting

$$A * B = \{a * b \mid a \in A \land_1 b \in B\}.$$

Finally, we generalize the usual two-valued inclusion relation for fuzzy sets to many valued ones defining

$$A \subseteq_{i} B =_{def} \forall x(x \in A \longrightarrow_{i} x \in B)$$
,

with i = 1,2. Again we write simply A & B if it does not

matter if we choose $\boldsymbol{\subseteq}_1$ or $\boldsymbol{\subseteq}_2$. And it is easy to see that

$$\models A \subseteq_2 B \longrightarrow A \subseteq_1 B$$
 ,

$$\models A \subseteq_2 B$$
 iff $\models A \subseteq_1 B$,

372/1

$$\models$$
 A \subseteq_2 B \land_1 B \subseteq_2 C \longrightarrow A \subseteq_2 C .

4. Fuzzy Equations

Now we are ready to describe the results. We follow the way of presentation in /5/. The proofs will be given elsewhere. With some simple facts of our many valued logic, which not be explained here, they are almost straightforward.

We start from a binary operation \star within our universe of discourse \underline{U} , and extend it to fuzzy sets over \underline{U} in accordance with the extension principle. Immediately we get Corollary 1. For all $x \in \underline{U}$

$$\models x \in A * B \iff \exists a \exists b (a \in A \land_1 b \in B \land_1 x = a * b)$$
.

Proposition_1.

(1)
$$\models A \subseteq B \rightarrow A * C \subseteq B * C$$
,

(1)
$$\models A \subseteq B \rightarrow C * A \subseteq C * B$$
.

Corollary_2.

Proposition_2.

(i)
$$A * (U_{j \in J} B_j) = U_{j \in J} (A * B_j)$$
,

$$(\mathbf{U}_{j\epsilon J} \mathbf{A}_{j}) * \mathbf{B} = \mathbf{U}_{j\epsilon J} (\mathbf{A}_{j} * \mathbf{B}) .$$

From this, using the support |B| of fuzzy set B, we get Corollary 3.

$$A \star B = \bigcup_{b \in B} (\{x \star b \mid x \in A \land_1 b \in B\}).$$

Corollary 4. If * has in \underline{U} an unique left inverse $\textcircled{\textbf{w}}$ such that: z = x * y iff $x = z \textcircled{\textbf{w}} y$, then

$$A * B = \bigcup_{b \in |B|} (\{z \mid z \mid b \in A \land_1 b \in B\}).$$

<u>Definition 1</u> (cf. /4/,/5/).

$$C \cong A =_{\text{def}} \{y \mid \forall x(x \in A \rightarrow_2 x * y \in C)\}.$$

Proposition_3.

$$\models \ C \subseteq_2 D \longrightarrow C \cong A \subseteq_2 D \cong A .$$

Proposition_4.

$$(1) \models A*(C*A) \subseteq C ,$$

(5)
$$\models$$
 B \subseteq (A $*$ B) \cong A.

Proposition 5.

$$(\ \) \qquad \qquad \models \quad A * B \subseteq_2 C \longrightarrow B \subseteq_2 C \widetilde{*} A \quad ,$$

(11)
$$\models$$
 B \subseteq C $\stackrel{\sim}{*}$ A \longrightarrow A \ast B \subseteq C .

Corollary_5.

$$\models$$
 A*B \subseteq_2 C \iff B \subseteq_2 CA.

Definition 2.

$$A =_2 B =_{def} A \subseteq_2 B \land_1 B \subseteq_2 A$$
.

Gerellary_6.

$$\models A \models_2 B$$
 iff $A = B$.

THE SEEM.

$$\models \exists X(A * X \equiv_{2} C) \iff A * (C \widetilde{*}A) \equiv_{2} C .$$

Gerellary_7.

(i)
$$\models \exists X(A * X \equiv_2 C)$$
 iff $A * (C \widetilde{*} A) = C$,

(A1)
$$\models \exists X(A * X \equiv_2 C)$$
 iff $A * X = C$ has a solution.

This last result, Corollary 7, contains the main theorem of 75%. The generalization we proved in our theorem now gives

but furthermore: the degree of equality (in sense of \equiv_2)

A * (C * A) and C is the same as the degree of existence of solution of A * X \equiv_2 C.

Or, to put it more loosely: if A * (C * A) and C are rearly equal then $A * X \equiv_2 C$ is (to the same degree) nearly equals, and vice versa.

- /1/ K. GÖDEL, Zum intuitionistischen Aussagenkalkül, Anzeiger Akad. Wiss. Wien, math.-naturwiss. Kl., 69 (1932), 65 66.
- 727 S. GOTTWALD, A cumulative system of fuzzy sets, in: Set Theory and Hierarchy Theory (W Marek, M Srebrny, A Zarach eds.), Lect. Notes Math. <u>537</u>, Springer-Verlag 1976, pp. 109 119.
- S. GOTTWALD, Set theory for fuzzy sets of higher level, Fuzzy Sets Systems 2 (1979), 125 151.
- E. SANCHEZ, Resolution of composite fuzzy relation equations, Inform. and Control 30 (1976), 38 48.
- E. SANCHEZ, Solution of fuzzy equations with extended operations, Memo. UCB/ERL M82/63, Electronics Research Laboratory, University of California, Berkeley, 1982.
- D. ZADEH, The concept of a linguistic variable and its application to approximate reasoning I, Information Sci. 8 (1975), 199 249.