A NOTE ON HOMOMORPHISMS ON FUZZY RIGHT-TOPOLOGICAL SEMIGROUPS

Bao-Ting Lerner
Department of Mathematics
U.S. Naval Academy
Annapolis, MD 21402

1. INTRODUCTION

Rosenfeld in [2] introduced the concepts of fuzzy groups and fuzzy semigroups. Foster in [1] then formulated the elements of a theory of fuzzy topological groups. In this paper, we extend some of Foster's results on homomorphic images and inverse images to fuzzy right-topological semigroups.

2. PRELIMINARIES

Definition 2.1. A fuzzy topology on a set X is a family

(i) We ϵ I , k_c ϵ J where k_c have constant membership functions.

(ii) A, B
$$\epsilon J \Rightarrow$$
 A \wedge B ϵJ

(iii)
$$A_j \in \mathcal{I} \quad \forall_j \in J \Rightarrow \bigcup_{i \in J} A_j \in \mathcal{J}$$
.

The pair (X, \mathcal{J}) is called a fuzzy topological space and members of \mathcal{J} are the open fuzzy sets.

Definition 2.2. Let A be a fuzzy set in X and ${\cal J}$ a fuzzy topology on X. Then the induced fuzzy topology on A is

the family of fuzzy subsets of A which are the intersections with A of $\mathcal J$ -open fuzzy sets in X . Denote by $\mathcal J_A$ the induced fuzzy topology, and by the pair $(A,\mathcal J_A)$ the fuzzy subspace of $(X,\mathcal J)$.

Definition 2.3. Let (X, J), (Y, U) be two fuzzy topological spaces. A mapping f of (X, J) into (Y, U) is fuzzy continuous if for each open fuzzy set V in U the inverse image $f^{-1}[V]$ is in J.

Definition 2.4. Let (A, \mathcal{J}_A) , (B, \mathcal{U}_B) be fuzzy subspaces of fuzzy topological spaces (X, \mathcal{J}) and (Y, \mathcal{U}) respectively, and let f be a mapping: $(X, \mathcal{J}) \to (Y, \mathcal{U})$. Then f is a mapping of (A, \mathcal{J}_A) into (B, \mathcal{U}_B) if $f[A] \subset B$. Furthermore, f is relatively fuzzy continuous if for each open fuzzy set Y' in \mathcal{U}_B , the intersection $f^{-1}[Y'] \cap A$ is in \mathcal{J}_A .

Foster in [1] has formulated results for fuzzy topological groups. We extend these results to the more general case:

befinition 2.5. Let X be a semigroup and ${\mathcal J}$ a fuzzy topology on X. Let G be a fuzzy semigroup in X with induced topology ${\mathcal J}_G$. Then G is a fuzzy right-topological semigroup in X iff for each s ε X, the mapping ${\mathcal L}_S$ X = xs of $(G,{\mathcal J}_G)$ \to $(G,{\mathcal J}_G)$ is relatively fuzzy continuous.

3. THE MAIN RESULTS

Theorem 3.1. Given semigroups X, Y and a homomorphism $f(X) \to Y$, let \mathcal{U} be the fuzzy topology on Y and \mathcal{J} be the fuzzy topology on X such that $\mathcal{J} = f^{-1}[\mathcal{U}]$. Let G be a fuzzy right-topological semigroup in Y. Then f(G) is a fuzzy right-topological semigroup in X. Proof. We must show that the mapping $\rho_S: x \to xs$ of $f(G) \to f^{-1}[G]$ is relatively fuzzy continuous. Let U' be an open fuzzy set in $\mathcal{J}_{f^{-1}[G]}$ on $f^{-1}[G]$. Note that since f is a fuzzy continuous mapping from: $f(X,\mathcal{J}) \to f(Y,\mathcal{U})$, it is a relatively fuzzy continuous map of f(G), f(G), f(G) into f(G), f(G). Note also that there exists an open fuzzy set V' f(G) such that f(G) f(G)

The membership function of $\rho_S^{-1}[U']$ is given by

$$\begin{split} \mu_{\rho_{S}^{-1}[U']}(x) &= \mu_{U'}[\rho_{S}(x)] \\ &= \mu_{U'}(xs) \\ &= \mu_{f^{-1}[V']}(xs) \\ &= \mu_{V'}(f(xs)) \\ &= \mu_{V'}(f(xs)) \end{split}$$

But
$$\mu_{\rho_{t}^{-1}[V']}(f(x)) = \mu_{V'}[\rho_{f(s)}(f(x))]$$

$$= \mu_{\rho_{f(s)}^{-1}[V']}(f(x))$$

$$= \mu_{f^{-1}[\rho_{f(s)}^{-1}[V']]}(x), t \in Y.$$

By hypothesis the mapping $\rho_t: y \to yt$ of $(G, \mathcal{U}_G) \to (G, \mathcal{U}_G)$ is relatively fuzzy continuous. Hence, $\{0' \mid \Lambda \mid f^{-1}[G] = f^{-1}[\rho_{f(s)}^{-1}[V']] \Lambda \mid f^{-1}[G] \text{ is open in the induced fuzzy topology on } f^{-1}[G]$.

Theorem 3.2. Given semigroups X, Y and a homomorphism for Y onto Y, let J be the fuzzy topology on X and $\mathcal U$ be the fuzzy topology on Y such that $f(J) = \mathcal U$. Let G be a fuzzy right-topological semigroup in X. If the membership function μ_G of G is f-invariant, then f[G] is a fuzzy right-topological semigroup in Y.

Proof. From Rosenfeld [4], f[G] is a fuzzy semigroup. We must show the mapping $\rho_t:y \to yt$ from $(\{G\}\}, \ \mathcal{U}_{f[G]}) \to (f[G], \ \mathcal{U}_{f[G]}) \text{ is relatively fuzzy continuous.}$

Note that f is relatively fuzzy open; for if $U=U\cap G$, there exists $U\in \textbf{\textit{J}}$ such that $U'=U\cap G$ and by the f-invariance of μ_G ,

Let V' be an open fuzzy set in $\mathcal{U}_{f[G]}$. Since f is onto, for each t ϵ Y there exists s ϵ X such that t = f(s) . Hence,

$$\mu_{f^{-1}[\rho_{\bar{t}}^{-1}[V']]}(x) = \mu_{f^{-1}[\rho_{\bar{f}}^{-1}[s)[V']]}(x)$$

$$= \mu_{\rho_{\bar{f}}^{-1}[s)}[V'](f(x))$$

$$= \mu_{[V']}[f(x)f(s)]$$

$$= \mu_{[V']}f(xs)$$

$$= \mu_{f^{-1}[V']}(\rho_{s}(x))$$

$$= \mu_{(\rho_{s}^{-1} \circ f^{-1})[V']}(x) .$$

By hypothesis, $\rho_s: x \to xs$ is a relatively fuzzy continuous map: $(G, \mathcal{J}_G) \to (G, \mathcal{J}_G)$ and f is a relatively fuzzy continuous map: $(G, \mathcal{J}_G) \to (f[G], \mathcal{U}_{f[G]})$. Hence, $f^{-1}[V']) \land f[G]] = f^{-1}[\rho_t^{-1}[V']] \land G \text{ is open in } \mathcal{U}_G.$ Since f is relatively fuzzy open, $f^{-1}[f^{-1}[V']] \land f[G] = \rho_t^{-1}[V'] \land f[G] \text{ is open in } \mathcal{U}_G.$

REFERENCES

- Mathematical Analysis and Applications, 67(1979), 549-564.
- Analysis and Applications, 35(1971), 512-517.