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System of equations in a linear lattice

Jozet Drewniak

Department of Mathematics, Silesian University, Katowice, Poland

Set of all solutions of max-min system of equations is descripted.

‘resented algorithm is useful in determination of all solutions.

1. Introduction. Consideration of fuzzy relation equation (cf%Dﬂ) can be
restricted to the case similar to linear agebraic equation A x = b, where
aadition and multiplication are changed for the lattice operations max and mine

Sanchez |4] gives a characterization of solvability of fuzzy relation
zquations in infinitely distributive lattice and presentes formulas for the
extremal solutions. Familly of all solutions is descripted in a very simpler
case of the lattice L = [0,1] and fuzzy relations on a finite set (cf.[2l, (Jl).
Jonsiderations from papers [2] and [3] can be generalized to the case of '
arbitrary bounded linear lattice. We rewrite some resulis from these papers

and nodify algorithm from paper [2}.

2. bExtremal solutions. Let L. be a bounded linear lattice with bounds denoted
Oy O and 1, and let my, n be fixed positive iniegers. We ask for solution xeL”
ot the system of equations x o A = Db, i.e.

max min{x

=Dp. for jeJ , (1)
i€l J

&. .

m»=1 -n

AeL ,be‘b ,I={1,2,000,m}, J={1,2’oou,n}o

sne set of all such solutions we denote by X(A,b). After Sanchez{4] we have

Theorem §. X(A,b) # § iff wu o A = b, where

v, = min(a, .~»b,) for i€1, (2)

L JGJ 1] J
(1,ﬂ a b

a--b = for a, be L . (3)

Furthermore solution (2) is the greatest one in X(A4,b) # d.
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here X(A,b) is considered as poset (partially ordered set) with order relation
"¢ " restricted to X(A,b) from the lattice Lm, i.e.
. . m
wgn)é@(vigﬁi fOI‘lEI)‘ for v, 2€L . (4)
In general, X(A,b) does not form a sublattice in L™ and has not the least
element (cf.,_l:el). So we must consider lower bounds of X(A,b) in the form of

ninimal elements of this set,

nefinition 1 (cf.[1], p.4). Let X denote a subset of arbitrary poset.
& minimal element of X is an element z € X such that
{x<2)~wb(x=z) for x€ X . (5)
Similarly, % € X is a maximal element of X if
(zsz)=>(x=z) for xe€ X . (6)

set of all minimal elements in X(A,b) we denote by XO = XO(A,b).

txample 1. Let m = 3, n = 4, L = U),']ly

v

-

3 4 2
5 7 6|, v=103,3,4,4] .
0 4 4

[ ACRER W

Formulas (2) and (3) gives w = [7, 4,7 and we get u o A = b, Hence X(A,0)¥ ¢

and XO={y, z} » y=10, 4,0, z=1[0,3,4] .

5. Characterization of X(A,b). We assume that X(A,b) # § for given A and b.

Secause of isotonity of the lattice operations in (1) (cf. {11,p.9) we have ( cf.[ﬂ);

Lemma 1. X(4,b) is a convex subset of Lm, i.e. for any y, z € X(&,b),
the lattice interval
by, al = {xeil’l y{xgz} (7

is contained in X(4,b).

in example 1 we have Ly, w v [z,ul ¢ X(A,b) . We prove that any solution
or {1) is contained in a certain lattice interval determined by z € XO and
solucion (2) (cf. theorem 2).

Now let us consider k € In, k= ;l:k1, veus kh] and put

I = {K;s eeey K} C I, J(i)={ijedli=k} for ieI, (8)
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I max b, ,if i€ I
= 1je,]k(i') J for i€1, (9)

0 , if 1 ¢ I,

m

<(b) €L, k(b);

snere formula (9) is a special case of mapping used for function image of
iuzzy set (cf. Zadeh {5] ), if we consider k € I and b € L” as finctions
.z J=-I, b JHL (obser&e that Jk(i) = k-1({i}) for i € I).

5ince lattice L is linear, then for any j € J, all elements of the set
{min(xi,aij}}ieI are comparable and this finite set has the greatest element

ior ceriain index i = kj' ‘“hus we have

o ‘ . n »
Lemma 2 (cf.[2]). For any x € X(A,b) there exists k € I, such that

n3 = B4 3 . 10
an(xkj,akj’j) bj for j€J (10)

Set of all k from lemma 2 is denoted by K(x) C 1 for x € X(&,b), i.c.
K(x) = {keI"l k fulfils (10)} - (11)
Definition 2 (ef.l2],[31)e By a projection of solution X € X(A,b) with

respect to k € K(x) we name x* = k(b) € Lg , i.e. (c£.(9))

max b, , if i€l

xﬁ = 1jeJk(i) £ for i€1, (12)
0O , if i ¢ I,
Where
‘L'Q = {O’b‘l, c.., bn} C L - (13)

set of all projections of all solutions we denote by X1 = X1(A,b).

uxample 2. Let us consider solutions u, y, 2 = from example 1. We have
2 . 12
! K(y) = {kg} s K(z) = {k'°} , where

i 2 L3¢ |
& =12,1,1,2, & =l2,1,1,3, ¥ = [2,1,2,2, = [2,1,2,3,

(\,iu} = {k1, eney k

-k") = {;291’3,21, k6 = L2,1,3,51, k7 = [27271’2], k8 = {:2’291931’
k9 = [2,2,2,3 10_ B 5] A1 r. 12_
1292,21, k = 9252451, k= 1392,3,23, k= ‘[_2,2,3,31 .
) 1 '
‘hen projections x? = xk for i = 1,2560ey 12 have the form
1 _ 7 i 2 8 : » .
X =x = |4,4,01, x =x = E4’3a41, x3 = [3,4,0], X4= x5= [3,4,41,

6 . - |
" = [3,3,41, x9 =y = [0’4)(1-‘9 x10= xnz [094a4]9 x122 z = [0,3,4].
L)

&% observe that minimal solutions y and z are special cases of projections,

anu all projections are solutions of (1) (cf. lemma 1).
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iow we reprove (cf.[2l)

Lemme 3. Any projeetion of solution is also a solution end we have
xK gx , k€ ‘i{(xk) for x € X(A,b), k € K(x) . (14)

. . . k
Proof. Let x € X(A,b), k € K(x), i € I. If 1 é I, then by (12) X = 0] gxi.

11 ie Iy, then 1 = Kj for j € Jk(i) and by (10), (12) we get
x> = mpax bj = max min(xi,aij) gx

i . . . ; ) i’
JEJk(l) ;)&Jk(xj)

hus & £x and by isotonity of max and min in (1) we get
s

x'v‘oAgonzb. (15)

dow Let s € J. Using (1) and (10) we get

b
[}
b
i
"

k k

s Lo\

4

min{ max Db.,a
( Tk .8

2 min(b =b
aeJk(kS) J s ) - ( S,aks’s) s’

occause b < 8 g by (10). Therefore xk o A 2Db, which together with (15)
s’ :
k

croves that x € X(A,b). Now above jinequality changes for equality and we get
K o,
m.n(xK 28 ,s) = bs for s € J ,
s s
which denote that (cf.(11)) k € K(xk) . It finishes the proof of lemma 3.

How we list some useful corollaries.

Coroliary 1. As a direct sfxiexmx consequence of lemma 3 and definition 2

we gel
(xk)k = xk“ tor x € X(&,b), k € K(x) , (@6)
X, = {xex(a,b)l £ = x for certain k € K(x)} ’ (17
T X.(A,b)nLg . (18)
Corollary 2 XO C X1 and
¥ = x  for x € Xg » k € K(x) . (19)

roof. If % is a minimal element of X(A,b) then by definition 1 and lemma 3

tef.(5) and (14)) we get & = x for any k € K(x), i.e. x € X, and we get (19).

Corollary 3 (cf.l31). X, is the set of all minimal elements in X,.
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iroot. By above corolaries all elements of XO are minimal in X1. Let

suppose  that z € X, is a minimal element of X,, and z ¢ Xy i.e. there
cxists x € %(A,b) such that x < z. then by lemma 3

& {:x <z and xk € X1 for k € XK(x) ,
which is contradictory with definition 1. ‘i‘herefore the only minimal elements

SR

, are elements of XO.

soroliary 4. Seis XO and X1 are finite.

Lemma 4. For any x € X(A,b) there exists 2z € XO such that 2z L %.
troof. In finite poset any element is pounded below by minimal ene (ef. 1,
Le4=2), Since any solution X € X(4,b) is bounded below by its projections

iron finite set X, (cf. lemme 3 and corollary 4), then any solution x is

bounded below by certain minimal element 2z € Xi’ which is an element of xo
{=1. coroliary 3)e
as immediate consequence of lemmas 1 and 4 we write (ef. 21, [3])

“heorem 2. Let u denote solution (2), then

x(A,b)m = {xeL"| z {x {u for certain 2z € X} = z\éX} z,ul.
4 0

ibove characterization reduces problem of determination of infinite

Yamily of all solutions to the determination of finite set XO.

4. Characterization of X,. Our assumpiion X(a,0) # ¢ implies that X, # ¢

{t. iemma 4). We reprove (cf.l3l}

Lemma %. Let x, 2z € X(A,b), then

(x z) = (K{x) ¢ K(z)) , (20)

; k k.
{x gz) = (x =z for k € K(x)) . (21)
vrocfs If x Lz and k € K(x) then from (10) we get

o= mi
m(xk ) 92
J J

«

) L min(z, .} < max min(z,,a..) = b.
yJT R kg akj,a N er i’ 13) J
arnd k € K(z) by definition 2, which proves (20). Now any k € K(x) gives
vrojection (ct. definition 2)
= 7% = k(o) ,

widen proves (21).
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secause of corollary 2 (ef.(19) and (21), cf.also [(3]) we have

. . . . k
scrollary 5. ¥or any z € X, there exists k € K(u) such that u =z ,

wnere u denoves solution (2).

dow we give a characterization of XO different from that of corollary 3(cf {3)

‘heoren 3. Set X.O can be descripted as
X, = {xeX(a,b)| x = xk for any k € K(x) } - (22)
procf, After coroldary 2 any X € X, fulfils (19). Let suppose that an
clement x € X(4,b) fulfils (19) and x 4 Xy i.é. there exists 2z € X(4,b),
such that 2 < Xe Thén by lemma 3“there existes k € K(x) such that
g;z Cx |

snicn is contradictory 1o (19). So we have (22).

x K
X = oz

5. Determination of XC' Observe that numeration, of rows in systenm (1)

sar. ve permubed such that

o, g eee € By K By (23)

onaer this assumption, for any 2z € %X(A,b) we form a binary mailrix B = B(z) ,

jl , if min(zi,ai.) = D.

b, . = l S for i€I, je€J. (24)
0, if mln(zi,aij) <:bj

ows of this matrix will be denoted by

i ,
o - Lbi_l, ssey binl fOI‘ 1 € I .

Coroilary 6. After (10) we get the equivalence
(o, =D &> (A=k) for i€l jeJ £25)
J KeK(z) J
Ve put the following modification of the algorithm from =l

sigorithm. Step 0. s = 1, K = @, 8y 3= O for jE€J, a = La1, cesy ah;,.

ssep . Choose an index ks € I such that

biim"(“: - ‘ ’ (26)
. - ks
Siep 2. 8 = max(a,b ) ,
X 3= 0y K = Kufk.} s (27)
k. = k 3 £ = X i
5 kg if By {1 for jJ€J, 37 s . (28)

S
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Gtep 9. I P 3= {jeJl By = 0} # ¢, then s := max P and go back to Step 1.

Suep 4. %, =0 for i € INK {end). (29)

2y X(2z) we denote set of all x € Lm obtained from this algomithm.
vogether with x € 1® also k € % is determined., We can omit (28) if we
aro interested ® in determination of x only. Similarly in determination of k,

cetn (27) and (29) can be omitteds

- omme 6. Let z € X(A,b). If x€L" and k€ I are determined by ‘the

sigoritom, then
< € k(z), x = T €30)

proof. By (26) and (28) by ;s =1 for s €J, and corollary 6 implies
that k€ K(z) (aefiniﬁioﬁ 2).s

Under assumption (23) projeetion (12) reduces tq the form zi = bs with
¢ = min Jk(i) for i € I, and z? =0 for i¢ Lo thus after (27)-(29)
A= zi for i € I, i.e. X = zk. Now by lemma 3 k € K(zk) = K(x) and from

Lemma 3 we get the right side of (30).
(oroilary 7. X(z) C X1 for any 2z € X(4,b) .

emma 7. X{z) contains all minimal solutions not greater then zy for z €X(a,b)

¢roof. Let Z € X(A,b), v € X, and vg z. After corollary 3 and lemma 5
“nere exists h € K(v) such that v = = 2%, We show that x = v can be
sbiained in ‘the algorithm for B = B{(z).

Since v = v2, then for any i € I, there exists Jj € J such that i =hy,

tee. (cf. lemma 1 and (24)) bij = 1. Putting s = min Jh(i) we get

v. = yr= max b,=b,, b, =1 (31)
i . .
i DGJhﬂl) 3 s is
sccording to (2%;. So 1 = h1 can be chocsen in the Step 1 of the algorithm
ior g = 1 and we get
o - g hy
K, =n, X, = b, = Vs K = {n1} y &=Db .
Successive repetitions in algoritvhm brings

£ = j = »
g T By xks vks for s € J

according to (27), (28) ana (31). Yhus algorithm gives x; = v, for i € Ke
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i ¢ &, then after (29) xs =0 < \ and therefore x g v, but v is

. inimel solution, whence x = v. This proves that v € X(z).
A5 a direct consequence for z = u we get

‘heorem 4. Let u denote solution (2), then XO c X(u) .

e ailso get new characterizationsof minimal elements

‘neoren 5. X, = {v € X(4a,0)1] n(v) v} } .
sroof. After theorem 3, for any v € XO’ K(v) contains only v. Now by lemma 7

“vr any 2z € X(A,b), K(z) contains at least one minimal element, which finishes

whe proof.

{heorem 6. XO is the set of all minimal elements in X(u).

Frocf. Elements of XO are minimal im X(u) because of theorem 4 and

serollary ¥ Yow by lemmas 4 anc 7 another minimal element does not exists

MBS

_xample 3. in our example 1 we make suitable permutation. Now

FRRP
a=176 35 3 , v=104,4,3 34,
4 4 2 0
and condition (23) is valid. For the solutions u, y and 2 fron example 1
W&get
1t 0 0 1 c 0 0 0 ¢ 0 0 O
Bluw) = {1 v 1 1, Bly)={1 t 1 11 , B(z) ={0 O 1 1} .
1 1 0 O 0 0 0 0O} 1 1 0 O

appiication of algorithm gives X(u) = {xl, Xﬁ; ¥, 2}, X(y) = {Y}a X(z) = {z} ’
Witn notmation from example 2. Similarly we get X(x1) ={x1, Y} » X(x ) = {x y2}e
we see, that minimal elements y and z can be distinquish in X(u) by theorem 5.
Now let us obserwe that permutation of columns of matrix A is not unique
secause b1 = b2 and b3 = b4. Using matrix B(u) we can modify first permutation

sutiing the following additional condition

m
. = b y o=> j
‘bj u3+1) { 311 bij ;i b1,3+1 for je€d. (32)
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soove used permutation not fulfils condition (32) which leads to the

susiowing modification

o413 0 1 0 1
A= (b ¥ 3 3‘ s b= L4,4-92,3—1, B(u) = |1 1 1 1 .
i 4 2 o 1 10 0

~ow 2lgorithm gives exactly two solutions: y and Ze

6. Conclusion. Presented results allow us to determine all solutions
a1 considered sys%em of max—mln equations (1). Flrst, using theorem 1 we
verify if A(A,o) # ¢ . Next, using solution (2), algorithm produces X(u)
inimal solutions can be distinguish in X(u) by appllcatlon of theorem 6
‘comgare any two elemenis and omit greater element if exists), or theorem 5
{using double algorithm for successive results of the first algorithm onmit
such results v, which leads to K(v) # {v}). After determination of KO’ set
.+ a1l soluvions is described by ‘theorem 2.

Cur consideration can be exactly repeated for dual system of min-max

ejuations
oin max(x,,a, J=Db, for je€J . (1)
iel v J

siwer transposition of "min" and "max" . alse - transpositionsof

‘E‘”wﬁ"?",‘%ﬂ'mﬂ">","W'mﬂ'ﬂ%‘muﬁmdeMMQW"wm'demﬂ

- are necessar
“iement", "the greatest element" and "the least element"s After this transpo-
“ivionsall dual results are valid, and dual algorithm produces maximal

sciutions of system (1') (cf. definition 1).
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